Tag: morphology

Shape Variation of the Pectoral Girdle of Anolis Ecomorphs

The first three paragraphs of Jane Peterson’s contribution to the Second Anolis Newsletter.

Jane Peterson’s contribution to The Second Anolis Newsletter remains one of the most comprehensive exemplars of functional-morphological research of the anoline appendicular girdles. In just a few short paragraphs Peterson (1974) outlined the key differences in pectoral girdle morphology between the Anolis ecomorphs, drawing information from both field observations and anatomical dissections of anoles from all four Greater Antillean islands. The outlined study could have formed a major contribution to our understanding of ecomorphology, had these brief observations ever been expanded into a scientific publication. Sadly, they remained as notes, confined to a brief communique on an informal basis (that continues to be formally cited). Several intriguing studies hence have examined anole appendicular morphology, but rarely allowed for implications that reach across multiple island radiations (e.g. Anzai et al. 2014, Herrel et al. 2018).

With my 2016 Ph.D. thesis, I set out to quantify what Jane Peterson had observed forty years prior, and must confess that I still fall short of reproducing the multitude of implications that Peterson’s (1974) brief descriptions alluded to. Instead of combining video-recorded movement cycles with morphological descriptions, my comparisons are solely based on three-dimensional shape analysis of the skeletal elements that comprise the breast-shoulder apparatus (BSA): the clavicle, interclavicle, presternum, and scapulocoracoid (Fig. 1). Employing the power of computed tomography scanning, and geometric morphometric analysis, I quantified the shapes of the central elements of the pectoral girdle, and compared these across anole radiations.

As with earlier work, I focused on the Jamaican ecomorph representatives, and sought out their ecomorph counterparts from Hispaniola and Puerto Rico, particularly targeting those species that are the most and least similar to the Jamaican forms. That last line of thought did not reveal any straightforward answers, as the complex structural shape of the BSA allows these anoles to be relatively distinct in some aspects, while being quite similar in others. For example, the general shape of the presternum and interclavicle are quite similar between the two trunk-ground anoles Anolis lineatopus (Jamaica) and A. gundlachi (Puerto Rico), while that of the scapulocoracoid differs quite remarkably between the two. These complex associations will take a more detailed analysis than what is warranted here, so I’ll focus on the bigger picture instead.

Fig. 1: BSA of Anolis baleatus

Fig. 1: CT-rendition of the skeletal components of the breast-shoulder apparatus of Anolis baleatus in lateromedial view, depicting all anatomical features described in the text. The gray arrow denotes anterior.

Skeletal elements of the BSA in isolation

Previous analysis of the scapulocoracoid in isolation revealed that its shape differs between Anolis habitat specialists, and resembles a particularly dorsoventrally tall shape in twig anoles (Tinius et al. 2020). The other ecomorph groups (trunk-ground, trunk-crown, and crown-giant) show obvious tendencies towards a particular structural organization, but in none of these does the scapulocoracoid resemble a truly characteristic shape.

Evolution 2019: What Shapes the Shape of Lesser Antillean Anole Claws?

Organismal performance frequently depends on multiple phenotypic traits in the context of the environments these organisms inhabit. Earlier this year, we saw the  study  by Yuan and colleagues examining the integration of claw and toe pad morphological evolution related to structural habitat partitioning of the Greater Antillean anoles. At Evolution 2019, Michael Yuan, a PhD student in Dr. Marvalee Wake’s Lab at U.C. Berkeley, presented work delving into the next steps of this line of questioning investigating the morphological evolution of claw and toe pad morphological evolution in Lesser Antillean anoles.

Do the patterns of claw and toepad evolution found on the Greater Antilles hold for the divergent lineages found in the Lesser Antilles?

Yuan collected data characterizing toe pad width; lamella number;  claw height, length and width and claw geometric morphometric data on species found in the Lesser Antilles. He found that the total variation in claw and toe pad morphology was similar between the Lesser Antillean and Greater Antillean anoles. To potentially explain this variation, he explored environmental variables, seeking to explain if macrohabitat is associated with claw and toe pad morphology. He found that on single species islands, there was a strong relationship between habitat and toe curvature, leading to a pattern between macrohabitat and claw shape that is disrupted by competitive interactions on the two-species islands. To investigate microhabitat as a potential predictor of this variation, he asked if claw and toe pad traits are correlated with perch height. Unlike his study in the GA anoles, he found no relationship between claw and toe morphology and perch height, unless it was broken down by series. Functional traits are predictably correlated with vertical habitat in the bimaculatus series (anoles that colonized the Lesser Antilles from the Greater Antilles), but not in the roquet series (anoles that colonized the lesser Antilles from mainland South America).

BSA of Norops lineatopus

Geometric Morphometric Analysis of the Shoulder of Jamaican Anoles

garmani mating trivers IIxBirds are lovely animals. Our avian friends swoop through the air, defecate on field equipment, and consume lizards. What’s not to like?! Well, their shoulder region, for example. Lost interclavicle, reverted muscle pathways, and so many other anatomical adaptations that appear crucial for the modern avian life style, but that are hard to explain in a gradual-evolutionary context. Reconstructing the structural evolution of the avian shoulder remains a challenging task to students of biomechanics and kinematics. When I left my European homestead to enter the Canadian realm of biological sciences, I was hoping to solve the evolutionary mystery of the avian shoulder, at least in part. Alas, the discovery of anoles sent me on a much more convoluted journey.

Here is the first tale that resulted from that endeavour (Tinius & Russell 2014).

Finding the “Rare” Anolis duellmani

Like many quests to find rare herps, this is a story of courage, persistence, and strength. Just kidding; it was a piece of cake.

Anolis duellmani was described by Fitch and Henderson (1973) based on four specimens from the southern slope of the Volcán San Martín Tuxtla, Veracruz, Mexico. Even though the phylogenetic position of A. duellmani is uncertain, no additional morphological variation had been described for the species. As part of a major effort led by Dr. Adrián Nieto-Montes de Oca and Dr. Steven Poe to untangle the systematics of Mesoamerican anoles, Israel Solano-Zavaleta, Levi N. Gray, and I went to Los Tuxtlas to search for the elusive species.

Anole Performance Meta-analysis!

http://onlinelibrary.wiley.com/doi/10.1002/ece3.528/full

Example of a three-task Pareto front in a 3D morphospace, Figure 9 in Sheftel et al 2013.

 

I want all of your old performance data.

Who am I? I am a Ph.D. student and the thrust of my dissertation project is to arrive at a better understanding of how selection, trade-offs and constraints act on suites of performance traits, leading to adaptive phenotypic shifts in populations and, ultimately, evolutionary change. I am particularly interested in constraints imposed on performance evolution by intralocus sexual conflict, and in the relationship between preferred and maximal performance.

What am I going to do with it? I am conducting a meta-analysis of existing performance data, which involves mapping suites of performance traits onto lizard morphospace and fitting a multivariate response surface. This surface can then be used (by everyone!) to predict trade-offs between different types of performance traits in various selective contexts, and to identify regions of morphospace associated with performance peaks and valleys. These areas, and the taxa that occupy them, would thus be of interest in terms of looking for behavioral compensation or other solutions. Conversely, areas of morphospace devoid of extant taxa may be indicative of insurmountable constraints or something even more interesting. Such insights will, I hope, inform more exploratory, experimental and comparative avenues of investigations.

I’m focusing on Anolis in particular to start with, and I’d like to quantify the relationships between the span of extant anole morphology and any and all whole-organism performance traits. But to do this, I need data! Lots and lots of data! And I don’t have enough 🙁 Which means I need your data.

What I need:

 Raw data1 from previously published studies involving performance trait data along with morphological2 measurements for any and all Anolis species would be very useful and much appreciated. The more coverage of morphospace/performance space, the more useful and powerful the model!

If you’ve ever measured any of the following performance traits in anoles, you’ll probably be getting a grovelling email from me, but just in case you have somehow escaped my scrutiny, or don’t want to wait for the grovelling email, here is what I am looking at:

  • bite force
  • sprint speed
  • acceleration
  • endurance
  • exertion
  • maneuverability
  • jumping
  • climbing
  • clinging

Performance data for multiple traits measured in the same individual will be the most informative, but I will also need plenty of data on single performance traits. I have few other standards (as far as this project goes), so anything will be useful!

Thanks so much for reading this far! I sincerely hope this piques your interest and inspires you to share your work with me. I will of course be open to discuss any and all aspects of data-sharing, collaboration and subsequent use or availability of the data. All contributing authors will be acknowledged and papers cited, or whatever else is necessary! If you have anything you would like to contribute please feel free to contact me directly @ acespede@uno.edu.

1 I can use raw data files, in whatever format (e.g., .xls, .txt., .sys, .jpg of a lab notebook or rum-stained bar napkin).

2 I would be happy with anything from SVL-only to comprehensive measurements for individual limb components, toe pad area, etc. Body size and limb measurements are ideal!

(Figure from Sheftel, H., Shoval, O., Mayo, A., Alon, U. 2013. The Geometry of the Pareto front in biological phenotype space. Ecology and Evolution, 3(6): 1471-1483)

Unique dewlap?

I recently returned from a trip to eastern Cuba and as expected, made some interesting observations and gathered some new natural history information.
While poking around one evening with a flashlight (mainly looking for Eluth’s) I saw this “orange” sagrei sleeping on some veg. I photographed it to share here since there was some discussion on and off blog about this color phase. After I got it in hand to determine species (since homolechis and jubar were also very common in the area), I was surprised at the dewlap appearance. At first I thought it had a red mite infection because of the color and texture; but after scrutiny, just accepted that it had a bright red pigment that was scattered about the entire ventral anterior. Any ideas or similar observation?

Powered by WordPress & Theme by Anders Norén