Ecology of the San Salvador Bark Anole (Anolis distichus ocior)

 An adult male San Salvador Bark Anole (Anolis distichus ocior) displaying. Photograph by Guillermo G. Zuniga.

An adult male San Salvador Bark Anole (Anolis distichus ocior) displaying.
Photograph by Guillermo G. Zuniga.

Dayton Antley and colleagues from Avila University, the home of AA stalwart Bob Powell, recently published a detailed study of the ecology of the San Salvador bark anole (Anolis distichus ocior) in IRCF Reptiles & Amphibians (an open-access herpetological journal, with this article available here). Anolis d. ocior is one of 17 recognized subspecies of the diverse distichus group, and is found on only San Salvador and Rum Cay (Henderson and Powell 2009).

Antley et al. assessed microhabitat use, activity patterns, and approach distances of A. d. ocior in an approximately 0.3ha study area on the grounds of the Gerace Research Centre, dominated by Tropical Almonds (Terminalia catappa), Papaya (Carica papaya), and Ficus trees.

A Google Map view of the Gerace Research Centre. The study site (24°07'05.2"N 74°27'50.9"W) is outlined in white.

A Google Map view of the Gerace Research Centre. The study site
(24°07’05.2″N 74°27’50.9″W) is outlined in white.

In assessing patterns of microhabitat use throughout the day, Antley et al. conducted surveys every two hours for two days from 0700h (about 40 min after sunrise) to 1900h (about 40 min before sunset). Size class, perch height and diameter, body orientation relative to the ground, and thermal microsite (sun/shade/mixed) were recorded for every observed lizard. In the following two days, approach distances were assessed. This was achieved by a surveyor, wearing neutrally-coloured clothing, approaching an undisturbed anole at a steady pace and recording the distance at which the lizard reacted. Over two additional days, 10-minute focal animal observations were conducted of individual adult lizards (including both males and females) at a distance of 5m. The number of movements (changes in location or orientation), head turns, and head bobs were recorded for all lizards, with dewlap displays and pushups being additional recorded for males.

Lizards were active throughout the day, with activity peaking in the early morning and before midday. This was compared to ambient air temperatures recorded 1m from the ground in a shaded and sheltered location. This result surprised the authors, as a second activity peak in late afternoon/early evening was expected, as has observed in other similar studies of bark anoles (e.g. Hillbrand et al. 2011).

Mean number of lizards active (bars) and mean ambient temperatures (dots) per time period. Temperature data were collected on two consecutive days.

Mean number of lizards active (bars) and mean ambient temperatures
(dots) per time period. Temperature data were collected on
two consecutive days.

Adult males experienced highest levels of arboreality during the middle of the day, while subadult males and adult females (grouped together as they can be hard to distinguish from distance) were highly variable (see figure below). Most lizards of all classes were found in the shade, which the authors attributed as evidence for thermal conformity, and facing downward towards the ground, a common trait in many anoles that is most commonly perceived to increase an individual’s ability to monitor potential predators, competitors, or mates. 43% of lizards, however, were observed facing upwards. The author’s note that this behavior is often interpreted as an individual prepared for escape; however as all lizards were observed from distance and undisturbed, they (admirably) explain that this result is difficult to interpret.

A: Mean perch heights (cm) of adult males (L) and subadult males and females (S); B: mean perch heights of adult males at different times of day; C: mean perch heights of subadult males and females at different times of day.

A: Mean perch heights (cm) of adult males (L) and subadult males and females (S); B: mean perch heights of adult males at different times of day;
C: mean perch heights of subadult males and females at different times of day.

Adult male lizards were bolder than smaller subadult males and females, and retreated at a much closer distance when approached by a surveyor (0.99m +/- 0.07m vs. 1.54m +/- 0.18m). Focal observations revealed no significant differences between adult males vs. subadult males/females in shared behaviors, although there was a high variation in the amount of displaying behavior between adult males. The average time spent conducting dewlap displays was 3%, although one male was recorded investing 47% of his time in a combination of dewlap extensions and pushup displays.

Using all survey data combined, Antley et al. estimate that A. d. ocior in this study plot had a population density of 593 individuals/ha, with lizards observed on all but four of the smallest trees surveyed. Antley et al. note that their density estimate is extremely conservative, and much lower than previously published estimates (e.g. 1.070-5,460 individuals/ha, Schoener and Schoener 1978). The authors suggest that the small size of the study plot may have contributed to the relatively low density.

In all, this is a charming (although admittedly short) study of the natural history of the San Salvador bark anole (A. d. ocior) – a great example of an undergraduate research project that follows through to publication!

References
– Antley, D.L. et al. 2016. Microhabitat, Activity, and Approach Distances of the San Salvador Bark Anole (Anolis distichus ocior). IRCF Reptiles & Amphibians 23(2): 75-81
– Henderson, R.W. and R. Powell. 2009. Natural History of West Indian Reptiles and Amphibians. University of Florida Press, Gainesville, Florida.
– Hillbrand, P.A., A.T. Sloan, and W.K. Hayes. 2011. The terrestrial reptiles of San Salvador Island, Bahamas. Reptiles & Amphibians 18: 154–166.
– Schoener, T.W. and A. Schoener. 1978. Estimating and interpreting body-size growth in some Anolis lizards. Copeia 1978: 390–405.

Some Anoles from Cuba – Help for ID

During July-August 2016, I went for a three-weeks holiday trip to Cuba. Being a Ph.D. student at the Lizard Lab, I had to come back with pictures of… lizards of course. This post is dedicated only to the anole species I observed in Cuba. Any help to ID will be greatly appreciated! More of my pictures of the Cuban herpetofauna (anole and non anole) can be found on my website website.

1- Anolis sp (?) from Cienfuegos.

DSC_0259-2DSC_0272-2

 

2- Anolis sagrei – Brown Anole

a) DSC_0307-3

b) DSC_0388-3

c) DSC_0391-3

 

3- Anolis allissoni – Allison’s Anole

a) DSC_0418-2

b) DSC_0483-3

c) DSC_0897-3

 

3- Anolis homolechis – Cuban White-fanned Anole

a) DSC_0515-3

b) DSC_0842-3

4- Anolis porcatus – Cuban Green Anole

DSC_0534-2

5- Anolis vescus – Purial Bush Anole (??) from Baracoa

DSC_0556-3

6- Anolis sp (?) from Viñales

DSC_0819-2

Honduran Anole Identification

119_2007

I have been working my way through McCranie and Kohler’s guide to Honduran anoles and thought I would pull out some old photos from when I did some romping about Honduras a decade ago. At the time I had little interest in anoles and barely noticed them on my trips to Honduras (O foolishness of youth!). These photos below, however, represent a species I remember seeing frequently. I believe it is Norops lemurinus but without a specimen in hand it is difficult to use a dichotomous key. I was hoping someone more familiar with this part of the world could offer confirmation or correction. I was on the northern coast a few miles east of Balfate, less than 50 m above sea level.

I took my first trip to Honduras in 2004 at the age of 19 and made six more trips over the next eight years. Unfortunately, what I remember most was how the landscape changed so drastically from one year to the next as more and more people, mostly ‘norteamericanos,’ moved in to extract any and all resources from the land. At 19, I could hardly take one step through the long grasses on my way to the beach without scattering a half dozen lizards. I remember that so vividly! By the time I hit my late 20’s the grasses were replaced with a coconut grove and a size-able complex of condominiums (built by and, I assume, advertised to Canadians).

Of course, there are still plenty of herps around and about: when last I left, the cane toads and hemidactylids were doing just fine.

119_1996 119_2009

A Tale about Two Tails: No Effect of Having a Regrown Tail on Body Condition

A dorsal view of the brown anole male that I collected on the 19th of July 2002.

A dorsal view of the brown anole male that I collected on the 19th of July 2002.

On the 19th of July, 2002, I collected a brown anole (Anolis sagrei) male from the edge of a rice paddy next to a tarred road in Santzepu, Sheishan District, Chiayi County, Taiwan, as part of a diet and reproductive cycle study. As I removed it from the fine-meshed fishing scoop net, which I used for capturing it, I found that it had two tails. I later found that even though the lizard had no abdominal fat bodies the animal was still in a reproductive state, indicating that it was not only able to regenerate a tail twice, but it could also still meet the energetic demands for reproduction.

This finding prompted our study to attempt to address the question of whether there are differences in the abdominal fat body weights and liver weights of A. sagrei specimens that had suffered tail autonomy and conspecifics that had not.

We were surprised when we found no statistically significant variations in the monthly mean abdominal fat-body weight indices or monthly mean liver weight indexes of lizards that had not experienced caudal autotomy and those that had. We hypothesize that A. sagrei specimens that experienced tail autotomy most likely met the energetic demands for regenerating the lost portion of their tail by foraging more.

Editor’s Note: for more on two-tailed anoles, such as the photo below, type “tail” or “tailed” into the search bar on the right.

 

ESA 2016: Top-Down Effects of Brown Anoles on Islands Following Hurricanes

Following up with summaries of anole talks at ESA 2016, Dave Spiller presented a broad summary of his and his colleague’s (Tom Schoener and Jonah Piovia-Scott) research investigating the effects of hurricanes on long term food web dynamics of small Bahamian islands, which has just recently been published in Ecology (see Spiller et al. 2016).

Picture1

Spiller opened by explaining some of the patterns of food web dynamics that have been learned from this research. Most notably, that the elimination of brown anoles – which act as top predators in these simple ecosystems – leads to increased levels of herbivory as arthropods experience a relaxation of predation pressure (Spiller and Schoener 1990).Specifically, the presence of a common moth (Achyra rantalis) on islands without brown anoles can lead to extreme levels of herbivory upon a common island plant, Sesuvium portulacastrum (below).

Picture3

Spiller and his colleagues began to notice that following hurricanes, one of the most extreme natural disturbance events in this region, islands with lizards experienced a much more rapid recovery of Sesuvium .

Picture4

In an attempt to understand how ecosystems may be stable despite experiencing extreme disturbance regimes, Spiller and colleagues measured the percent ground cover of Sesuvium and abundance of Achyra moths on 11 islands with lizards present and 21 islands without lizards annually for 10 years.

Overall abundance of Achyra was 4.6 times higher on no-lizard islands than on lizard islands. The percent cover of Sesuvium exhibited lower temporal variability on lizard islands when the study site was undisturbed by hurricanes, and higher recovery rate on lizard islands following hurricanes.

Picture5

Spiller concluded by suggesting that these stabilizing phenomena are linked to a trophic cascade in which predators (brown anoles) control herbivores (Achyra moths), and therefore enhance plant recovery following hurricanes.

Brown Anole Mouthful

Photo by Karen Cusick

It’s amazing the size of prey that some anoles will try to get down their throats (and who could blame them?).  Here’s an example from Daffodil’s Photo Blog. And here’s another example from the same source.

Great Nickname for Jamaican Anole

Screen Shot 2016-08-08 at 10.29.04 AM

Anoles on Exhibit at the Milwaukee Public Museum

 

IMG_1463

AA stalwart Tony Gamble has provided these two photos from exhibits at the Milwaukee Public Museum. The one above is a knight anole, whereas below, an Archaeopteryx appears to be dining on a green anole, significantly increasing our understanding of the age of the anole radiation.

AA’s other Wisconsin stalward, Greg Mayer, provides the low-down: “The equestris  is from the Rain Forest exhibit. This is a fabulous exhibit based mostly on the Costa Rican rain forest, but including some other tropical/rain forest elements. I take my vert. zool. class there every year, and have used it as part of the pre-trip preparation for Costa Rican field classes. It was funded in part by the NSF, and involved lots of field work–they did latex casts of trees to get the bark right for life size models of them! The Milwaukee Public Museum was much involved in making Costa Rica the center of tropical studies for US-based scientists. The MPM was slightly independent of OTS. They had their own field station, La Tirimbina, which is very nice–I’ve taken students there 2 or 3 times.

Allen Young, the MPM lepidopterist, was the driving force for Milwaukee’s tropical studies. He wrote about his work at Tirimbina in Sarapiqui Chronicle (Smithsonian Institution Press, Wash. DC, 1991). Young first went to Costa Rica in 1968 with OTS, then focused his work at Tirimbina. (Bob Hunter, who owned Tirimbina at the time, also owned part of La Selva, and was involved in getting both places established as field stations.) MPM’s stake in Tirimbina was sold off by then Milwaukee county executive (now governor) Scott Walker, who couldn’t imagine why a natural history museum in Wisconsin could be interested in Costa Rica. Fortunately, another conservation organization bought MPM’s share.

Others were involved in the exhibit creation as well, and though I’ve never asked him, I’ve always thought the Anolis equestris behavior display in the rain forest exhibit may have been a contribution of Bob Henderson. There are several males and females (not sure if they’re freeze-dried, or some kind of model), showing various levels of agonistic display– fans, nuchal crests, open mouth, raised posture– set out on vines/branches. A question I ask vert. zool. students about this display case is how could they tell the lizards are arboreal, even if they were not posed on branches.”

And with regard to the photo below: “The other picture is from the Third Planet exhibit (I’m always tempted to write Third Rock!), from a section of that very good exhibit on the Hell Creek Formation and the end Cretaceous vertebrate extinctions. The MPM has two Archaeopteryx models made up with feathers, and the one in the pic has a dried or model Anolis carolinensis in its mouth, painted a fairly bright green. The other Archaeopteryx model is better done, and that one goes out on loan periodically to other museums (I think I’ve seen it at the Field Museum).

IMG_1466

Owls Eat a Lot of Anoles: Data from Dominica

An owl with a green anole.

A recent paper in the Caribbean Journal of Science on the diet of the Lesser Antillean barn owl on Dominica revealed that anoles, specifically the native species A. oculatus, are a very frequent prey item, constituting 193 of the 517 prey items. The authors note that owls are nocturnal and anoles are diurnal and proffer three explanations: 1. the predation occurs at dawn and dusk, when both species are normally active; 2. the anoles are active around lights at night; 3. the owls are catching the anoles while they sleep. We’ve discussed this topic before: owls are known to eat anoles in Cuba and many other places in the neotropics, and there’s the great photo re-posted below (original post here). As far as I’m aware, that’s the only direct observation of an anole being preyed upon by an owl (although a quick search on Google Images will yield many photos like the one at right). We’ve also discussed the parallel  issue of bat predation on anoles in these pages. Clearly, more data are needed!

Mystery Anole from Gulfo Dulce, Costa Rica

IMG_4901

I was recently doing some anole field work in the Gulfo Dulce area of Costa Rica, and I came across a lizard that has me stumped. Perhaps some more experienced AA readers have some insight – any idea what species this little guy is? To me, it looks a bit like A. limifrons and a bit like A. carpenteri, but not completely like either (and carpenteri isn’t supposed to occur in the Gulfo Dulce area). It was in an area of pretty thick primary forest, perched about 6 ft or so up a tree trunk, and it ran quite high when I pursued it. I’d appreciate any tips!

IMG_8631 (2) IMG_8638 (2) IMG_8645 (2) IMG_8655 (2)

Page 95 of 297

Powered by WordPress & Theme by Anders Norén