Box Turtle Scavenges Green Anole!

My good friend Trace Hardin, a professional entomologist but also avid herper and snake breeder, just sent me these photos below. Here’s what he had to say about the encounter on Instagram:

hardinherpetologica: Interesting observation while walking through the woods. Found this #BoxTurtle eating a dead #GreenAnole. I’m assuming it was a scavenged find but the entire body was gone by the time I came upon the scene. #Neature

IMG_6792

IMG_6789

Has anyone else observed box turtles (or any other chelonian [I guess now testudine?]) interacting with anoles?

What Drives Substrate Use Patterns in Semiaquatic Anoles?

Anolis oxylophus at La Selva Biological Station (left, photo by Christian Perez) and Anolis aquaticus at Las Cruces Biological Station (right, posed).

Anolis oxylophus at La Selva Biological Station (left, photo by Christian Perez) and Anolis aquaticus at Las Cruces Biological Station (right, posed).

Among anoles, West Indian ecomorphs are the best known microhabitat specialists, but they are not the only ones. Semiaquatic anoles, of which there are 11 described species, live exclusively near streams and will sometimes enter water to feed or to escape a threat. The Central American species Anolis aquaticus appears to be specialized for climbing on rocks, particularly relative to other Central American semiaquatic anoles (Muñoz et al. 2015). Recent posts on A. aquaticus have addressed sleep site fidelity, dewlaps and trait scaling, and underwater foraging.

During a field ecology course with the Organization for Tropical Studies last winter, I compared patterns of substrate use between A. aquaticus and another Central American semiaquatic anole, Anolis oxylophus. Unlike A. aquaticus, A. oxylophus perches predominantly on woody and leafy substrates (Table 1). I wondered what was driving the differences in substrate use between these two species that appear broadly similar in morphology and lifestyle. Some Caribbean anoles alter their behavior to use only a narrow subset of available substrates in their habitat, whereas others have a greater breadth of substrate use that more closely reflects habitat-wide availability (Irschick and Losos, 1999; Mattingly and Jayne, 2004; Johnson et al., 2006). To evaluate whether substrate use differences between A. aquaticus and A. oxylophus are driven by substrate availability, species-specific selectivity, or both, I simultaneously quantified lizard substrate use and substrate availability within their streamside habitats.

Evolutionary Predictability: Can We Predict the Color of One Lizard Species by Looking at Repeated Patterns of Geographic Variation on Other Islands?

Thanks to the work of Roger Thorpe and colleagues, Lesser Antillean anoles are renowned as an example of adaptive geographic variation. On many islands in the Lesser Antilles, populations in wet areas, where vegetation is lush, are green in color, whereas those in more xeric areas tend to be a drab gray, often with markings on their back. This pattern is repeated on many different islands, the convergent geographic variation thus making a strong case for the adaptive basis of anole coloration.

See Pavitra Muralidhar’s previous post for more information on geographic variation in Lesser Antillean anoles.

In a new paper in PLoS One, Thorpe takes this work a step further, asking whether we can use the parallel patterns seen across Lesser Antillean islands to predict the coloration of an anole species on another island. The focal species is Anolis bonairensis, which occupies the extraordinarily dry island of Bonaire (see our previous posts on this species).

The prediction: A. bonairensis should be grayer and drabber than populations of anoles that occur at the driest sites on Lesser Antillean answers.

The answer: yes! Just as predicted, Anolis bonairensis is one drab lizard. Score one for evolutionary predictability!

thorpe

Anolis bonairensis is represented by the red circles. The x-axis goes from aridity on the left to the most mesic on the right. As you can see, A. bonairensis‘s color and patterning is well-predicted by variation in other species.

New Mainland Green Anole Recognized

Anolis biporcatus, one of the prettiest of anoles. Photo by Thomas Marent

Anolis biporcatus is, if I’m not mistaken, the largest mainland beta/Norops anoles, attaining a length of ca. 100 mm snout-vent. In addition, it has an enormous geographic distribution, ranging from southern Mexico to Ecuador. In a new paper in Salamandra, a team of New Mexican and Ecuadorian biologists headed by Janet Armstead have sliced off part of the species, raising the Ecuadorian/Colombian A. biporcatus parvauritus to species status. They make this decision based on a detailed analysis of morphology and molecular data. Their data also find deep genetic subdivisions within A. biporcatus in Costa Rica, suggesting that there may be more cryptic species awaiting recognition.

A key difference between the species is the color of the distal scales on the dewlap of males, white in biporcatus, black in parvauritus.

biporc male

Note, too, that like many mainland anoles, the males and females have very different dewlaps.

biporc females

Here’s the distribution of the two species:

map

Factors Restricting Range Expansion for the Invasive Green Anole Anolis carolinensis on Okinawa Island, Japan

 

Photograph was taken in Hahashima, Ogasawara Islands, by Hideaki Mori.

Photograph was taken in Hahashima, Ogasawara Islands, by Hideaki Mori.

We would like to introduce our recent paper on the invasive green anole (Suzuki-Ohno et al. 2017). In Japan, the green anole Anolis carolinensis invaded the Ogasawara Islands in 1960’s and Okinawa Island in 1980’s. In Ogasawara Islands, A. carolinensis expanded its range  and had a significant negative impact on native species and the ecosystem. This becomes a big problem since Ogasawara Islands are designated as a natural heritage.

On Okinawa Island, A. carolinensis was first captured in 1989  and it did not expand its distribution until more than 25 years later, although its density is extremely high in the southern region.  In the northern region of Okinawa Island, Yambaru area, native forests are preserved so that it is important to avoid the invasive effects of A. carolinensis. Thus, It is important to determine whether A. carolinensis has the potential to expand its distribution on Okinawa Island.

Phylogenetic analysis shows that the invader A. carolinensis originated in the western part of the Gulf Coast and inland areas of the United States. Interestingly, all of the invaded A. carolinensis in Ogasawara, Okinawa and Hawaii originated from the Gulf Coast and inland areas of the United States.

ND2 phylogeny using Okinawan, Ogasawaran, and Hawaiian populations in addition to haplotypes used by Campbell- Staton et al. (2012) and Hayashi et al. (2009). The map was redrawn from Campbell-Staton et al. (2012)

ND2 phylogeny using Okinawan, Ogasawaran, and Hawaiian populations in addition to haplotypes used by Campbell- Staton et al. (2012) and Hayashi et al. (2009).The major branches with high posterior probabilities of the Bayesian inference method (>0.99) are indicated in bold. The map was redrawn from Campbell-Staton et al. (2012). Cited from Suzuki-Ohno et al. (2017). Figure 2 of Suzuki-Ohno et al. (2017) lacks bold lines in error.

We used a species distribution model (MaxEnt) based on the distribution of native populations in North America to identify ecologically suitable areas on Okinawa Island. The MaxEnt predictions indicate that most areas in Okinawa Island are suitable for A. carolinensis. Therefore, A. carolinensis may have the potential to expand its distribution in Okinawa Island.

MaxEnt prediction of suitable areas for A. carolinensis in Okinawa Island according to the presence data for North America. Lighter and darker areas indicate high or low suitability, respectively. Points indicate the presence distribution of A. carolinensis. (a) prediction using all parameters, (b) prediction omitting mean diurnal range and precipitation of warmest quarter

MaxEnt prediction of suitable areas for A. carolinensis in Okinawa Island according to the presence data for North America. Lighter and darker areas indicate high or low suitability, respectively. Points indicate the presence distribution of A. carolinensis. (a) prediction using all parameters, (b) prediction omitting mean diurnal range and precipitation of warmest quarter. Cited from Suzuki-Ohno et al. 2017.

The predictions indicate that habitat suitability is high in areas of high annual mean temperature and urbanized areas. The values of precipitation in summer in the northern region of Okinawa Island were higher compared with those of North America, which reduced the habitat suitability in Okinawa Island. Adaptation to low temperatures, an increase in the mean temperature through global warming, and an increase in open environments through land development will likely expand the distribution of A. carolinensis in Okinawa Island. We think that invasive anoles (A. calrolinensis and A. sageri) prefer open habitats.

Therefore, we suggest that A. carolinensis should be removed by using traps and/or chemicals. In addition, we must continue to be alert to the possibility that city planning that increases open environments may cause their range to expand.

These results were published as Suzuki-Ohno et al. (2017) Factors restricting the range expansion of the invasive green anole Anolis carolinensis on Okinawa Island, Japan. Ecology and Evolution 

Calcium Storage in Anoles

Enlarged endolymphatic glands in two A. lemurinus museum specimens

Enlarged endolymphatic glands in two A. lemurinus museum specimens

I’ve been looking through a lot of anole museum specimens lately, and I’ve noticed that many of them have pretty pronounced endolymphatic glands, which made me curious about their prevalence and function in anoles generally.

Endolymphatic glands serve as calcium reserves, and are present in many animals, including a number of reptile and amphibian clades. According to Etheridge (1959), these glands are present in anoles and a few of their close relatives (e.g. Polychrus), but not in any other Iguanians. But it looks like most of the research on their function (in reptiles) has focused on geckos. In geckos, the size of the glands has been shown to fluctuate in response to both stress and reproductive activity, supporting the idea that the stored calcium is used in egg production, both for the yolk and the shell (Brown et al. 1996, Lamb et al. 2017). However, in anoles and geckos, these glands are present in both males and females, so their function isn’t limited to providing calcium for eggs (Etheridge 1959, Bauer 1989, Lamb et al. 2017).

But I haven’t found much information on these glands in anoles. I personally haven’t noticed them in the wild, but so far I’ve found very pronounced glands in 13/66 museum specimens, and some of them are really striking (see photos)! So I’m curious to hear, how often do you other anole-ologists see these enlarged glands? Is there any other literature about their prevalence, seasonality, or function in anoles that I’ve overlooked? Seems like we might be lagging behind the gecko crowd on this topic!

Citations:

Bauer A (1989) Extracranial Endolymphatic Sacs in Eurydactylodes ( Reptilia : Gekkonidae), with Comments on Endolymphatic Function in Lizards. J Herpetol 23:172–175.

Brown SG, Jensen K, DeVerse HA (1996) The Relationship Between Calcium Gland Size, Fecunduty and Social Behavior in the Unisexual Gecks Lepidactyluse Lugubris and Hemidactylus Garnotii. Int J Comp Psychol. doi: 10.5811/westjem.2011.5.6700

Etheridge R (1959) The relationships of the anoles (Reptilia: Sauria: Iguanidae) an interpretation based on skeletal morphology.

Lamb AD, Watkins-colwell GJ, Moore JA, et al (2017) Endolymphatic Sac Use and Reproductive Activity in the Lesser Antilles Endemic Gecko Gonatodes antillensis (Gekkota: Sphaerodactylidae). Bull Peabody Museum Nat Hist 58:17–29.

 

Legendary Brazilian Anoles Rediscovered

Several anole species are known from a single remote locality or only a few individuals, sometimes collected long ago. Because sampling these species is hard, we have a limited understanding about their biology and evolution. In a recent paper, we report on the rediscovery of Anolis nasofrontalis and Anolis pseudotigrinus, two mainland species from the Brazilian Atlantic Forest that were not reported for more than 40 years. Based on DNA sequence data, we examine their placement in the Anolis tree of life and estimate divergence times from their closest relatives. Moreover, based on the morphological attributes of newly and previously collected specimens (some of which were overlooked due to misidentification), we provide much needed taxonomic re-descriptions.

Fig. 1. Coloration in life of Anolis nasofrontalis (A, B) and A. pseudotigrinus (C, D). In A, inset shows the black throat lining of A. nasofrontalis, an uncommon trait that may be indicative of close relationships with Andean anoles (such as A. williamsmittermeierorum). Photographed specimens are females.

Coloration in life of Anolis nasofrontalis (A, B) and A. pseudotigrinus (C, D). In A, inset shows the black throat lining of A. nasofrontalis. Photographed specimens are females.

This study starts with efforts by collaborator Dr. Miguel T. Rodrigues (Universidade de São Paulo) to investigate reptiles and amphibians that have been undetected for years – a gap that could indicate human-driven extinctions. On late 2014, Dr. Rodrigues and his students (including co-author Mauro Teixeira Jr.) launched an expedition to the mountains of Santa Teresa (state of Espírito Santo, Brazil), the type locality of both A. nasofrontalis and A. pseudotigrinus. After a few days (and nights) of search, the team spotted the first A. pseudotigrinus in decades. The adult female was found sleeping on a narrow branch, (probably) unaware of its significance for South American biogeography (so were we). No signs, however, of A. nasofrontalis.

Shortly after, PhD students Paulo R. Melo-Sampaio (Museu Nacional) and Leandro O. Drummond (Universidade Federal do Rio de Janeiro) decided to visit Santa Teresa, inspired by conversations with Dr. Rodrigues. At this point, Dr. Rodrigues, my supervisor Dr. Ana C. Carnaval (City University of New York), and I had agreed that a phylogenetic study of A. pseudotigrinus would fit my PhD research well. Then, on early 2016, we got an unexpected email from Paulo and Leandro, with the first picture ever taken of an A. nasofrontalis in life. Both legendary anoles were real!

Back to the lab, we generated DNA sequence data and performed phylogenetic analyses, with completely unexpected results. First, A. nasofrontalis and A. pseudotigrinus are not closely related to the other (confirmed) Atlantic Forest species (A. fuscoauratus, A. ortonii, and A. punctatus); instead, they are close relatives of a species from western Amazonia, the “odd anole” Anolis dissimilis. These three species were found to compose a clade with A. calimae from the western cordillera of the Colombian Andes, A. neblininus from a Guiana Shield tepui on the Brazil-Venezuela border, and two undescribed Andean species (Anolis sp. R and Anolis sp. W from Poe et al. 2015 Copeia). This clade falls outside of the five major clades previously recovered within the Dactyloa radiation of Anolis, which have been referred to as species series (aequatorialis, heterodermus, latifrons, punctatus, roquet). Based on these results, we define the neblininus species series of Anolis.

Fig. 2. Phylogenetic relationships and divergence times between species in the Dactyloa clade of Anolis inferred using BEAST. Asterisks denote posterior probabilities > 0.95.

Phylogenetic relationships and divergence times between species in the Dactyloa clade of Anolis inferred using BEAST. Asterisks denote posterior probabilities > 0.95.

The neblininus series is composed of narrowly-distributed species that occur in mid-elevation sites (or adjacent habitats in the case of A. dissimilis) separated by large geographic distances. This pattern suggests a complex biogeographic history involving former patches of suitable habitat between regions, followed by habitat retraction and extinction in the intervening areas. In the case of A. nasofrontalis and A. pseudotigrinus, for instance, past forest corridors may explain a close relationship with the western Amazonian A. dissimilis. Atlantic and Amazonian rainforests are presently separated by open savannas and shrublands, yet geochemical records suggest that former pulses of increased precipitation and wet forest expansion have favored intermittent connections between them. These connections may have also been favored by major landscape shifts as a result of Andean orogeny, such as the establishment of the Chapare buttress, a land bridge that connected the central Andes to the western edge of the Brazilian Shield during the Miocene.

Fig. 3. Geographic distribution of confirmed and purported members of the neblininus species series. The inset presents a schematic map of South America around 10-12 mya, when the ancestor of A. nasofrontalis and A. pseudotigrinus diverged from its sister, the western Amazonian A. dissimilis. The approximate locality of the Chapare buttress, a land bridge that connected the central Andes to the western edge of the Brazilian Shield, is indicated.

Geographic distribution of confirmed and purported members of the neblininus species series. The inset presents a schematic map of South America around 10-12 mya, when the ancestor of A. nasofrontalis and A. pseudotigrinus diverged from its sister, the western Amazonian A. dissimilis. The approximate locality of the Chapare buttress, a land bridge that connected the central Andes to the western edge of the Brazilian Shield, is indicated.

During our morphological examinations of A. nasofrontalis and A. pseudotigrinus, it became apparent that these two species are not very different from Caribbean twig anoles, with whom they share short limbs and cryptic coloration. We learned that these features are also present in other, distantly-related mainland anoles, such as A. euskalerriari, A. orcesi, A. proboscis, and A. tigrinus. Phylogenetic relationships support that a twig anole-like phenotype was acquired (or lost) independently within Dactyloa, perhaps as a result of adaptive convergence. Alternatively, this pattern may reflect the conservation of an ancestral phenotype. In the former case, an apparent association with South American mountains is intriguing.

Unfortunately, natural history data from A. nasofrontalis and A. pseudotigrinus are lacking. It is currently unclear whether they  exhibit the typical ecological and behavioral traits that characterize the Caribbean twig anole ecomorph, such as active foraging, slow movements, infrequent running or jumping, and preference for narrow perching surfaces.

Fig. 4. Anolis dissimilis, the 'odd anole'.

Anolis dissimilis, the ‘odd anole’.

It has become increasingly clear that broader sampling of genetic variation is key to advance studies of mainland anole taxonomy and evolution. This significant challenge also provides exciting opportunities for complementary sampling efforts, exchange of information, and new collaborations between research groups working in different South American countries.

To learn more:

Prates I, Melo-Sampaio PR, Drummond LO, Teixeira Jr M, Rodrigues MT, Carnaval AC. 2017. Biogeographic links between southern Atlantic Forest and western South America: rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brazil. Molecular Phylogenetics and Evolution, available online 11 May 2017.

Amazing Brown Anole Battle

Two male festive anoles (Anolis sagrei) fighting in Texas. From netscape.net‘s Facebook page.

This is reminiscent of similar battles in Sitana, like the photo below. Of course, we know all about Sitana fights here on AA.

Anoles Show How to Place Images on Phylogenies Plotted in R

download

Liam Revell has developed a method, which he explains in Phytools.

More On Blue-Eyed Anoles

Anolis etheridgei. Photo by Rick Stanley.

Anolis etheridgei. Photo by Rick Stanley.

Three-and-a-half years ago, I wrote a post on the phylogenetic distribution of blue eyes in anoles. They pop up all over anole phylogeny and in species with diverse habitats and geography. The post attracted 32 comments.

At the time, I asked if anyone had a photo of the blue-eyed Anolis etheridgei. Photographer par excellence Rick Stanley quick obliged, but I never got around to posting his photo, so here it is.

But the bigger question is: what about those blue eyes? Why hasn’t anyone studied the phenomenon? If you’ve got a good photo of a blue-eyed anole, send it here!

Page 81 of 297

Powered by WordPress & Theme by Anders Norén