SICB 2018: Local density of conspecifics affects sperm phenotypes in wild Anolis sagrei lizards

Theory predicts that males should invest more in ejaculate production when the likelihood of sperm competition is high, thereby increasing the chance of fertilization. However, ejaculates can be energetically costly, and increased investment into sperm production should only occur if there are fitness benefits associated with that increased investment. Growing experimental evidence suggests that sperm traits respond plastically to social environment. However, it is not known whether fine-scale spatial variation in the local density of male competitors or potential female mates corresponds to individual variation in ejaculate production.

Island population with capture records of males (blue) and female (red) anoles.

Island population with capture records of males (blue) and female (red) anoles.

Matt Kustra of the Cox lab examined a wild population to test the prediction that, as the risk of sperm competition increases (i.e., higher local density of male competitors), males will increase their total investment in their ejaculates (sperm count). He also tested for correlations between sperm morphology, specifically midpiece size and local density.

To do this, he and the Cox lab collected wild adults from an island population in Florida. They generated a map of each tree on the island using ArcGIS, then marked the location of males and females on this map. Using the kernel density function, they estimated the local density of individual males by taking into account all conspecific adults that were captured within a 5.8 m radius of an individual’s own capture location.

Matt found that length of the sperm midpiece increased with local density, whereas length of the sperm head and sperm count decreased with local density. Contrary to his predictions, he found that total investment in sperm count decreased with local density. This could be because males in high density environments have depleted their sperm stores because they have more opportunities to mate, or it could be because males are investing less per ejaculate if mating frequency is higher.

These findings indicate that fine-scale differences in local density within a wild population can affect sperm count and various sperm phenotypes. In the future, the Cox lab hopes to measure fitness in this populations to understand how sperm phenotypes shape individual reproductive success.

SICB 2018: Variation in metabolic rate among Anolis oculatus ecotypes on Dominica

Whereas in the Greater Antilles islands anoles evolved ecomorphs and live in communities with up to 11 species in sympatry, islands in the Lesser Antilles support only one or two species each. However, islands such as Dominica have populations of anoles that experience selective pressures resulting in different ecotypes.

Dominican Ecotypes

Figure from Thorpe et al. 2004

While Dominica is relatively small, the mountainous topology results in highly variable environmental conditions across the island with cool mountainous regions and warm coastal regions and thermal vents. The single endemic anole species present on the island, Anolis oculatus, exhibits four morphologically distinct ecotypes (Montane, Atlantic, North Caribbean and South Caribbean) and despite levels of gene flow between these ecotypes are high, adaptive differentiation in this system is maintained.

Photo by Aurélien Miralles

Photo by Aurélien Miralles

Tricia Neptune, a graduate student in the Watson lab, at Midwestern State University, explored whether these ecotypes also show any differences in metabolic rate (by measuring oxygen consumption) and its sensitivity to temperature (Q10) at ecologically-relevant temperatures.

Results show that size differences between ecotypes are reflected in their physiology with the south Caribbean ecotype exhibiting higher oxygen consumption and Q10 compared to the other three ecotypes. Tricia hypothesize that these differences in metabolism and temperature sensitivity are in part responsible for maintaining relaxed geographic segregation among ecotypes.

Tricia plans to incorporate data on sprint speed, bite force as well as investigate thermoregulation strategies in this species. It will also be interesting to see a comparative study between the A. oculatus ecotypes and the introduced Puerto Rican crested anole, A. cristatellus.

Figure from Thorpe et al. 2004

SICB 2018: Ecomorph Claws in Greater Antillean Anoles

The cover slide of Michael Yuan's talk at SICB 2018.

The cover slide of Michael Yuan’s talk at SICB 2018.

Convergent forms of anoles can be found across the Greater Antilles, with similar phenotypic and ecological morphs filling similar microhabitats from island to island.  Anole ecomorphs are in part defined by the extent of arboreality, as most species in the Greater Antilles spend a lot of time in trees.  Crandell et al. 2014 found arboreality to be associated with significant differences in claw characteristics in Costa Rica and Panama.  In Greater Antillean anoles, similar research into claw morphology has yet to investigate if this relationship holds across ecomorphs. Michael Yaun, a PhD student in the Wang lab at UC Berkeley, set out to investigate the patterns of variation of claw morphology in the Greater Antillean anoles.

Anolis barbouri is shown as an outlier in a PCA. The flattened claws of this ground-dwelling anole are illustrated in black to the right.

Anolis barbouri is shown as an outlier in a PCA. The flattened claws of this ground-dwelling anole are illustrated in black to the right.

Michael sampled 566 individuals, which included 55 species of anoles, all 6 ecomorphs, and another 8 species without any ecomorph designations.  His results suggest that perch height and diameter produced differential effects on claw characteristics.  Performance traits like toepad lamellae number and area were not correlated with claw height and length.  Michael’s study uncovered only one anole that conformed to previous research: Anolis barbouri, the only truly terrestrial species in the data set, possessing flattened claws.  Intriguingly, twig anoles have the most divergent claws, an inspiring result for future directions!

SICB 2018: Unraveling Natural and Human-Mediated Founder Events in Anolis carolinensis

Photo by Andrea Westmoreland

Photo by Andrea Westmoreland

Human-mediated range expansion is rapidly forming novel populations of anoles. The ancestry of these new populations typically traces back to a handful of individuals, and with repeated invasions the genetic history can be complex. These scenarios may be common in non-native populations of Anolis carolinensis, but what does the genetic history look like in such a system? In Sozos Michaelides’ talk at SICB 2018, he discussed his recently published findings.

Michaelides et al., 2017 tackled the question by inferring colonization history using mitochondrial haplotypes from Hawaiian Islands (Oahu, Hawaii, Maui, and Lanai) and some western Pacific islands (Guam, Palau, Saipan, Yap, and Rota). After genotyping 576 anoles, population genetic diversity and differentiation was assessed between native and non-native ranges. Results indicated geographically disparate haplotypes were identical (Hawaii to Brownsville, Texas), demonstrating that source populations may be from Texas or Louisiana. And a minimum of two introductions to Hawaii and Guam were uncovered, with subsequent within-population stepping-stone model colonization.

Overall, lower genetic diversity was found in non-native island populations as distance increased from the southeastern United States source population, and between the two archipelagos, genetic differentiation was high. Persistence of these non-native populations is not guaranteed because they are isolated, small in population size, and low in genetic diversity. It will be interesting to study the adaptive response of these introduced populations to stochastic climatic events!

SICB 2018: Insulin-Like Growth Factors and Anole Cells

IMG_0677

The insulin signaling network has an essential role in growth, reproduction, and aging. Insulin-like growth factors, or IGFs, are important protein hormones within this network and are typically conserved across vertebrates. However, some proteins in the insulin signaling network have experienced selection in reptiles. Also, not a whole lot is known about the specific functions of components of this network within reptiles.

Amanda Clark, a PhD student in Dr. Tonia Schwartz‘s lab at Auburn University,  investigated the the function of purified IGFs on cell function for brown anoles (Anolis sagrei) and crested anoles (Anolis cristatellus). She had five different treatments for cell plates from both species: brown anole (BA) IGF-1, BA IGF-2, green anole IGF-1, a positive control, and a negative control. Cell proliferation was not different among all of the treatments, possibly due to incorrect protein folding or low concentrations of IGF. As expected, cell viability was also not affect by the IGFs. In the future, this experiment will be conducted again with increased sample size and an improved positive control.

SICB 2018: When the Lights Go Up in the City

Chris Thawley at a crossroads.

Chris Thawley at a crossroads.

Plants and animals across the globe are dealing with increasingly changing environments resulting from urbanization. One such habitat alteration is artificial light at night (ALAN) that may affect how animals acquire or use energy. Because brown anoles (Anolis sagrei) are common invaders of urban habitats, they make good models to examine the consequences associated with ALAN. Thus, Chris Thawley of Jason Kolbe’s lab at University of Rhode Island altered the level of ALAN on female brown anoles to examine how ALAN might affect morphology, reproduction, and stress.

If this sounds familiar, Chris talked about this work at the 2017 JMIH meeting, which caught Anole Annals press. To recap, Chris found that ALAN increased female growth, advanced the start of egg laying to earlier in the season, and increased the reproductive output of smaller females. However, he hypothesized that such beneficial effects would be countered by negative effects on other traits. Thus, Chris measured levels of the stress hormone corticosterone in the blood of females, hypothesizing that those exposed to ALAN would have higher stress. Although marginally non-significant, females actually tended to have lower corticosterone levels. Chris presented new data for this presentation showing that male corticosterone levels were unaffected by ALAN too, suggesting neither adult male nor female brown anoles have a stress response to artificial light.

Thus, it appears ALAN exposure over this 7-week study was beneficial for brown anole reproduction. However, Chris cautioned that there may be negative consequences on other traits such as immunity or HPA function. ALAN might also induce negative consequences for reproduction later in life, such as a reduced lifespan. I recommend keeping an eye on the Kolbe lab to find out!

SICB 2018: Moms Help Embryos Beat the Heat

Putter, Austin, and a real big tree they visited while travelling to the meeting.

Putter, Austin, and a real big tree they visited while travelling to the meeting.

The effect of urbanization on animals was the topic of many presentations at this year’s SICB meeting. One difference in the abiotic environment of urban areas is that they are often hotter than neighboring natural areas. Sarin “Putter” Tiatragul and colleagues (Josh Hall, Nathaniel Palik, and Dan Warner) at Auburn University are interested in whether urban environments might influence the nesting ecology and development of anoles. Thus, they set to the field to search for nest sites of the Puerto Rican Crested Anole (Anolis cristatellus).

Putter predicted females would choose warm, open-canopied nest sites at both urban and forested habitats, but that the availability of such locations would not be equal between sites. As predicted, randomly available areas in urban habitat had less tree cover and were warmer than randomly available locations in the forest. In the forest, females nested in locations that were similar to what was randomly available (no preference) in terms of distance to the nearest tree, canopy cover, and nest temperature. However, urban anoles nested in less open areas and closer to trees than what was randomly available in the urban habitat. This resulted in female-chosen nests sites being cooler than what was randomly available.

These findings suggest female anoles in forested areas are not choosing nest sites, probably because the forested habitat is homogenous and provides little variation to choose amongst. However, females in urban areas search out cooler microhabitats possibly to achieve favorable incubation conditions for their offspring. Putter also suggested these females may be simply nesting close to where they normally occur, which is close to trees. Either way, females are using the habitat differently in urban areas and such variation will likely have consequences for offspring during development.

SICB 2018: Revisiting the Fitch-Hillis Hypothesis in Mexican Anoles

A small sample of anole dewlap diversity. Image from Nicholson et al. (2007).

A small sample of anole dewlap diversity. Image from Nicholson et al. (2007).

Dewlaps are pretty dazzling, ranging in size, coloration, and sexual dimorphism substantially among the 400+ species of anole currently recognized. Levi Gray, a doctoral candidate at the University of New Mexico is fascinated by Anolis dewlaps, and has spent many years studying them. One of the classic hypotheses surrounding dewlap evolution in anoles is that its size follows a clinal pattern with environment (Fitch and Hillis 1984). In their formulation, Henry Fitch and David Hillis proposed that, due to a relatively short breeding season, anoles in more seasonal habitats have larger dewlaps than anoles in more aseasonal habitats. This hypothesis makes an explicit connection between the intensity of sexual selection and the size of a conspicuous ornament.

Levi set out to test the Fitch-Hillis hypothesis in 40 species of Mexican anoles distributed across environmental gradients, with some species found in aseaonal cloud forests and rainforests and others found in more seasonally dry habitats. Contrary to the Fitch-Hillis hypothesis, he found no relationship between seasonality and dewlap size in the Mexican anoles. He did detect a few clade effects: for example, a group of closely related western Mexican anoles all have large dewlaps. He then examined the Fitch-Hillis hypothesis within a single widespread species of anole, A. sericeus, to see if the pattern holds up within species, even if it doesn’t hold up among species. Again, he didn’t detect a pattern. Levi suspects that the relatively limited sampling of the original study might have led to a pattern that doesn’t hold up when a broader sampling within and among species is employed. It is possible that seasonality impacts a different aspect of the dewlap, such as coloration, but this remains untested. Levi’s results suggest that the processes impacting dewlap size might be complex, and promises more to come. Stay tuned!

Levi Gray presents his research on dewlap size evolution in Mexican anoles at SICB 2018 in San Francisco.

Levi Gray presents his research on dewlap size evolution in Mexican anoles at SICB 2018 in San Francisco.

SICB 2018: How Many Neurons Are in An Anole Brain?

Across species, bigger brains usually mean better cognition. But, this relationship rarely holds when considering individual differences within a species. Within species, the number of neurons in the brain may be a better proxy for cognitive ability than brain size. Further, the number of neurons may be independent of brain size.  But how to measure neuron number?

levi

Levi Storks, a graduate student in Manuel Leal’s lab at the University of Missouri, set out to do just that. He adapted a protocol that has previously been used in mammals, birds, and crocodiles, but never before in lizards. In brief, he dissected the telencephalon, cerebellum, and other regions of the brain of an Anolis cristatellus and used the isotropic fractionator method to determine neuron number in each of the three. After homogenizing each tissue, he used a double-labeling technique with DAPI to stain each nucleus and neuronal nuclei antibody to stain each neuron, and used a hemocytometer to count the cells under magnification. Now that this protocol is working, look out for Levi’s future results on anole brain structure and cognition!

SICB 2018: How does muscle fiber number, size, and behavioral use vary across anole lizards?

OLYMPUS DIGITAL CAMERA

Muscle growth and development occur via different physiological mechanisms across the animal kingdom. Variation in behavioral uses of muscle may lead to the evolution of different muscle sizes across animal species. Different-sized muscles may vary in their capacity for strength or frequency of use and larger muscles may develop as the result of possessing higher numbers of muscle fibers, larger muscle fibers, or a combination of the two. Jesus Vega, an undergraduate student with Michele Johnson at Trinity University, was interested in learning how muscle size evolves across anole species by studying the retractor penis magnus (RPM), used to retract the hemipenes back into the tail.

Testing a hypothesis that larger RPM muscles will have more or larger muscle fibers, due to an expected evolutionary trade-off between fiber number and size, Jesus examined copulation behavior data and RPM muscle traits of 24 species of anoles. Behaviorally, there was no correlation found between copulation rate and RPM muscle fiber size or number. Physically however, species that have larger RPM muscles have more RPM fibers, species with larger muscle fibers have RPMs with more fibers, and species with larger bodies have more RPM muscle fibers and larger RPM muscles. These results show that larger muscles evolve due to increased muscle fiber size and number and also suggest that copulation behavior is not associated with muscle size evolution in anoles.

Page 68 of 297

Powered by WordPress & Theme by Anders Norén