Donations of Shed Anole Skins Needed

Anolis aquaticus

Recently, my lab has been excited to begin work on some of the morphological, behavioral, and physiological aspects of so-called “underwater breathingin semi-aquatic anoles. Given the current circumstances, I need to ask for a little help from the anolologist community. My collaborators and I are studying the microstructure of semi-aquatic anole skin – what about the skin allows a bubble to stick and move around the way it does?

We are seeking shed anole skin samples to compare with Anolis aquaticus. Any anole species or sex or any size sample will do. Really, a bit of shed skin that is even 1 cm long from a single individual would be a “big” sample and enormously helpful!

If anyone out there keeps anoles of any species in lab or at home and would be willing to drop a fragment of shed skin into an envelope for me, it would go a long way to helping us keep this project moving despite the moratorium on fieldwork.

If you are able to help, you can message me below. Thank you all in advance!

 

Recent Biological Invasion Shapes Species Recognition and Aggressive Behaviour in a Native Species: A Behavioural Experiment Using Robots in the Field

New literature alert!

In Journal of Animal Ecology
Dufour, Clark, Herrel, and Losos

Abstract

 

  1. Invasive species are a world‐wide threat to biodiversity. Yet, our understanding of biological invasions remains incomplete, partly due to the difficulty of tracking and studying behavioural interactions in recently created species interactions.
  2. We tested whether the interactions between the recently introduced invasive lizard Anolis cristatellus and the native Anolis oculatus in Dominica have led to changes in species recognition and aggressive behaviour of the native species.
  3. The use of realistic robots allowed us to test the behavioural response of 131 A. oculatus males towards relevant and controlled conspecific versus heterospecific stimuli, directly in the field and in two contexts (allopatry vs. sympatry).
  4. Our results show that species recognition evolved prior to sympatry in A. oculatus. Moreover, interspecific competition resulted in an increase in the time spent displaying and a divergence in the aggressive behaviour of the native species towards conspecifics versus heterospecifics. Inherent species recognition and higher aggressive behaviour may limit species coexistence as they are expected to favour A. oculatus during territorial interactions with A. cristatellus.
  5. While more studies are needed to understand the causes of these behavioural shifts and their consequences on long‐term species coexistence, the present study highlights the role of behaviour as a first response to interspecific interactions.

 

 

Dufour, C. M., Clark, D. L., Herrel, A., & Losos, J. B. (2020). Recent biological invasion shapes species recognition and aggressive behavior in a native species: a behavioral experiment using robots in the field. Journal of Animal Ecology.

Prevalence of Salmonella in Green Anoles (Anolis carolinensis), an Invasive Alien Species in Naha and Tomishiro Cities, Okinawa Main Island, Japan

New literature alert!

In Journal of Veterinary Medical Science
Sumiyama, Shimizu, Kanazawa, Anzai, and Murata

Abstract

Here, we investigated the prevalence of Salmonellaenterica, with and without resistance to 17 common antimicrobial agents, in 706 green anoles (Anolis carolinensis) that were collected in Naha and Tomishiro Cities, Okinawa Main Island, Japan, between 2009 and 2014. Salmonella strains, including S. enterica Weltevreden and Enteritidis serovars, were identified in the large intestinal content samples extracted from 15 (2.1%) of the analyzed green anoles. No antimicrobial resistance was detected. Thus, the present study demonstrates that although the prevalence of Salmonella and the risk of its transmission from the green anoles to humans or other animals on Okinawa Main Island are relatively low, the green anole population nevertheless represents a potential source of Salmonella infection that could affect human health in this region.

 

SUMIYAMA, D., SHIMIZU, A., KANAZAWA, T., ANZAI, H., & MURATA, K. (2020). Prevalence of Salmonella in green anoles (Anolis Carolinensis), an invasive alien species in Naha and Tomishiro Cities, Okinawa Main Island, Japan. Journal of Veterinary Medical Science, 19-0594.

Parallel Selection on Thermal Physiology Facilitates Repeated Adaptation of City Lizards to Urban Heat Islands

New literature alert!

In Nature Ecology and Evolution
Campbell-Staton, Winchell, Rochette, Fredette, Maayan, Schweizer, and Catchen

Abstract

Only recently have we begun to understand the ecological and evolutionary effects of urbanization on species, with studies revealing drastic impacts on community composition, gene flow, behaviour, morphology and physiology. However, our understanding of how adaptive evolution allows species to persist, and even thrive, in urban landscapes is still nascent. Here, we examine phenotypic, genomic and regulatory impacts of urbanization on a widespread lizard, the Puerto Rican crested anole (Anolis cristatellus). We find that urban lizards endure higher environmental temperatures and display greater heat tolerance than their forest counterparts. A single non-synonymous polymorphism within a protein synthesis gene (RARS) is associated with heat tolerance plasticity within urban heat islands and displays parallel signatures of selection in cities. Additionally, we identify groups of differentially expressed genes between habitats showing elevated genetic divergence in multiple urban–forest comparisons. These genes display evidence of adaptive regulatory evolution within cities and disproportionately cluster within regulatory modules associated with heat tolerance. This study provides evidence of temperature-mediated selection in urban heat islands with repeatable impacts on physiological evolution at multiple levels of biological hierarchy.

 

Campbell-Staton, S. C., Winchell, K. M., Rochette, N. C., Fredette, J., Maayan, I., Schweizer, R. M., & Catchen, J. (2020). Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nature Ecology & Evolution, 4(4), 652-658.

Anoles on TV: Harry the Lizard in Death in Paradise

Harry the lizard

I could have sworn we had a post on this some years ago, but can find no record of it in the Annals. So, just to get up to speed, Death in Paradise is a British detective show set on the island of Guadeloupe (Update, April 2021: the island is Saint Marie, a fictitious island in the vicinity of Guadeloupe and Martinique). A recurring character is Harry, who looks more-or-less like an anole. The show is set in Guadeloupe, hence the reasonable supposition that he is an A. marmoratus, as some articles explicitly state.

Speaking of articles, this post is prompted by a number of recent press articles highlighting Harry, including this piece in The Sun and another in the Daily Express. And one more from earlier this year. You may not be surprised to learn that Harry is not played by a real saurian actor, but rather is the result of CGI. The Sun‘s piece provides more detail, including the embedded video.

More favorite details on our favorite TV character can be found on his Wiki Fandom page.

Living High with a Cool-Cold Anole – Part I

On march 19, 2013, Jonathan Losos wrote about Anolis heterodermus in this blog, on a post called “Adventures with Phenacosaurus: “…I have to comment on the little-studied thermal biology of this species. The weather when we were there was usually overcast with the sun occasionally bursting out. Temperatures were usually in the 16-20̊ range. And the lizards were active! Moreover, we were at only about 2600 meters, but I have heard reports of them being found as high as 4000 meters! Clearly, a study on the thermal biology of this species would be fascinating!” One year later, I began to investigate this topic on A. heterodermus.

All my life I’ve loved reptiles, but only recently as part of my undergraduate studies in biology in the National University of Colombia, have I started in the herpetological world with Drs. Adriana Jerez and Martha Calderón. I was particularly intrigued by the thermal biology of these organisms. Soon I discovered that I’ve always lived in a high-elevation, cold city, Bogotá, in a neotropical country, Colombia, making the reptile species around me, which are ironically unknown, perfect models for questions about thermoregulation in reptiles.

A female Anolis heterodermus

As I tried to decide which of these species would be my model for my undergraduate thesis, I realized that my professors and some of my colleagues had already started to study some of the high-elevation species, like the high-Andean snake Atractus crassicaudatus, the microteiid Anadia bogotensis, and the collared tropidurids Stenocercus trachycephalus and S. lache. I realize now that my choice of the high-Andean lizard Anolis heterodermus for my study was one of the best decisions of my life as a biologist.

Between 2014 and 2015, I carried out my undergraduate thesis research under the direction of Dr. Martha Calderón on thermoregulation of Anolis heterodermus in Tabio, a town at 2650 m asl, close to Bogotá, Colombia. During my research, Martha, my colleagues and I had the opportunity to know Dr. Barry Sinervo and his group, who helped us with equipment and suggestions for our projects. Finally, in 2017, after my thesis was approved and I obtained my biology university degree, Martha and I published my first article.

Measuring an individual of Anolis heterodermus with calipers

Anolis heterodermus lives in a cold, low-quality thermal habitat that gets worse in wet seasons. Surprisingly, during the wet season, Anolis heterodermus copes succesfully with this seasonal variation and adjusts behaviorally to thermoregulate more actively to compensate for the reduction in the thermal quality of the habitat. In this way, these lizards match achieve their preferred temperatures just as in dry season. This match also occurs mostly at midday, particularly in sunny perch sites, confirmed by operative temperature data, which suggests that A. heterodermus is a heliothermic species. Additionally, sexes and ages are not different in their thermal traits, such as body and preference temperatures.

Study site: Tygüa Magüe Ecopark, Tabio, Colombia, at 2650 m asl.

But the most incredible trait of this species is its capacity to take advantage of the few sunny hours and sunny microhabitats to thermoregulate, taking into account that the tropical high-elevation ecosystems like the high-andean shrubs and forest, and subparamo and paramo not always are cold environments, but have large thermal fluctuation during the day too, which is reflected in the wide range of body (16.6-31.9°C) and preferred (19.1-30.2°C) temperatures. Definitely Anolis heterodermus is a very plastic thermoregulating species, as it has to be, because it is the anole species found at the highest altitude known.

 

Cite: Méndez-Galeano, M. A., & Calderón-Espinosa, M. L. (2017). Thermoregulation in the Andean lizard Anolis heterodermus (Squamata: Dactyloidae) at high elevation in the Eastern Cordillera of Colombia. Iheringia. Série Zoologia107.

Photos: Andres Herrera

 

Phylogenetic Signal and Evolutionary Correlates of Urban Tolerance in a Widespread Neotropical Lizard Clade

New literature alert!

In Evolution
Winchell, Schliep, Mahler, Revell

Abstract

Urbanization is intensifying worldwide, and while some species tolerate and even exploit urban environments, many others are excluded entirely from this new habitat. Understanding the factors that underlie tolerance of urbanization is thus of rapidly growing importance. Here, we examine urban tolerance across a diverse group of lizards: Caribbean members of the neotropical genus Anolis. Our analyses reveal that urban tolerance has strong phylogenetic signal, suggesting that closely related species tend to respond similarly to urban environments. We propose that this characteristic of urban tolerance in anoles may be used to forecast the possible responses of species to increasing urbanization. In addition, we identified several key ecological and morphological traits that tend to be associated with tolerance in Anolis. Specifically, species experiencing hot and dry conditions in their natural environment and those that maintain higher body temperatures tend to have greater tolerance of urban habitats. We also found that tolerance of urbanization is positively associated with toepad lamella number and negatively associated with ventral scale density and relative hindlimb length. The identification of factors that predispose a species to be more or less urban tolerant can provide a starting point for conservation and sustainable development in our increasingly urbanized world.

 

Winchell, K. M., Schliep, K. P., Mahler, D. L., & Revell, L. J. (2020). Phylogenetic signal and evolutionary correlates of urban tolerance in a widespread neotropical lizard clade. Evolution.

The Hypothalamic-Pituitary-Gonadal Axis and Thyroid Hormone Regulation Interact to Influence Seasonal Breeding in Green Anole Lizards (Anolis carolinensis)

New literature alert!

In General and Comparative Endocrinology
Kang, Kenealy, and Cohen

Abstract

Reproductive physiology and behavior is mainly regulated by the hypothalamus-pituitary-gonad (HPG) axis, although abnormal thyroid hormone (TH) levels alter HPG axis activity. Seasonally breeding animals, such as green anole lizards (Anolis carolinensis), undergo drastic hormonal and behavioral changes between breeding and non-breeding seasons, with increased sex steroid hormones, larger gonads and increased reproductive behaviors during the breeding compared to non-breeding seasons. Relatively less is known regarding the regulation of gonadal TH in seasonal reproduction. We examined whether the gonadal expression of enzymes involved in TH activation are altered in concert with seasonal reproduction. Type 2 deiodinase (Dio2) mRNA, the TH activating enzyme, was upregulated in breeding compared to non-breeding testes, while type 3 deiodinase (Dio3) mRNA, the TH deactivating enzyme, was upregulated in breeding ovaries. To study the association between the HPG axis and local activation of TH, we manipulated the HPG axis during the non-breeding season by subcutaneously injecting luteinizing hormone (LH) and follicle stimulating hormone (FSH) in male lizards. We found that acute LH and FSH injections induced many aspects of breeding, with increased testes size and testosterone levels. Surprisingly, Dio3 was upregulated in the testes after LH and FSH injections, while Dio2 mRNA levels were unchanged. These results suggest that there might be different roles for local TH activation in developing and maintaining fully mature and functional gonads. Our findings continue to support the role for TH in regulating reproduction.

 

Kang, H., Kenealy, T. M., & Cohen, R. E. (2020). The hypothalamic-pituitary-gonadal axis and thyroid hormone regulation interact to influence seasonal breeding in green anole lizards (Anolis carolinensis). General and Comparative Endocrinology, 113446.

Field Assistant Needed for Anolis Research in Florida!

Anolis sagrei

Anolis sagrei in Miami, Florida (K.Winchell)

 

UPDATE: POSITIONS FILLED! SORRY!

 

We are looking for a field assistant to help us conduct behavioural research on Anolis sagrei on small dredge-spoil islands near Ft. Pierce, FL, from April 22 to May 21. Daily activities include searching for and observing marked lizards as well as collecting habitat data. We will work long hours on most days (beginning 7-8am). Applicants should be prepared for hot and humid work conditions as well as travel on a small boat. Applicants must be comfortable handling lizards and using binoculars and should be adaptable to changing plans. All expenses (airfare, food, lodging) will be covered and a stipend will be provided.

If interested, please contact Ambika Kamath: ambikamath@gmail.com and Nick Herrmann: nicholas.carl.herrmann@gmail.com with a
brief letter describing why you are interested in this position and any relevant research experience along with your CV and the names and contact information of a professional reference whom we may contact by email. We will review applications as they arrive until the position is filled.

Fluoridation of a Lizard Bone Embedded in Dominican Amber Suggests Open-system Behavior

New literature alert!

In PLoS One
Barthel, Fougerouse, Geisler, and Rust

Abstract

Vertebrate fossils embedded in amber represent a particularly valuable paleobiological record as amber is supposed to be a barrier to the environment, precluding significant alteration of the animals’ body over geological time. The mode and processes of amber preservation are still under debate, and it is questionable to what extent original material may be preserved. Due to their high value, vertebrates in amber have never been examined with analytical methods, which means that the composition of bone tissue in amber is unknown. Here, we report our results of a study on a left forelimb from a fossil Anolis sp. indet. (Squamata) that was fully embedded in Miocene Dominican amber. Our results show a transformation of the bioapatite to fluorapatite associated with a severe alteration of the collagen phase and the formation of an unidentified carbonate. These findings argue for a poor survival potential of macromolecules in Dominican amber fossils.

 

Barthel, H. J., Fougerouse, D., Geisler, T., & Rust, J. (2020). Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behavior. PloS one, 15(2), e0228843.

Page 35 of 298

Powered by WordPress & Theme by Anders Norén