Call for Assistance: Anolis sagrei

Hi Everyone, a quick post to see if anyone out there is interested in contributing to a large ongoing project on Anolis sagrei. We are sampling this species throughout the (mostly) native range, and currently have 77 sampling locations represented. However, we are wondering if anyone would be able to help us fill some remaining gaps.
We are interested in adding additional tissue samples from Central America and the Bahamas. Here is an approximate range map with some desired localities (in blue):

R Graphics Output

Any help is greatly appreciated. I realize that collecting tissues (not to mention all the paperwork) is not a trivial task, so if you are interested in contributing samples please get in touch with me. We will keep AA posted on this project!

Anolis ortonii Displaying

I had the opportunity to study abroad in Ecuador last year, an amazing experience which culminated in a one-month stay in the rainforest at the Tiputini Biodiversity Station located in Yasuni Biosphere Reserve.  The most common species of anole there was Anolis ortonii, if you knew where to look. Despite several written accounts of A. ortonii being found close to the ground, I observed them in high abundance about 150 feet in the air at the top of a ceiba tree made accessible by a canopy tower.

My experience with Anolis displays in the wild is next to nothing, but  from what little I’ve seen, this swaying seemed unusual to me. Perhaps the more experienced anolologists here can comment on this. Regardless, enjoy the video of a lesser-known mainland anole!

Turks and Caicos Anole: Anolis scriptus

Much of my research has been conducted on the herpetofauna of the Turks and Caicos Islands (TCI). Known to a chunk of the lay public in North America as a sweet honeymoon spot, the Turks and Caicos boast a wonderful assemblage of terrestrial reptiles, like these IUCN critically endangered TCI iguanas (Cyclura carinata):

IMG_4541

Of course, we on AA prefer the smaller saurians, so I will draw your attention to the TCI anole (A. scriptus scriptus), a member of the Southern Bahamas Anole complex (A. scriptus).

Anolis s. scriptus, Big Ambergris Cay, TCI

Anolis s. scriptus, Big Ambergris Cay, TCI

Also known as the Silver Cay Anole, A. scriptus can be found across the southern Bahamas banks, including the Inaguas, Samana, Plana Cays, Mayaguana, and the Turks and Caicos Islands. I have previously posted about this understudied species (1,2), but spent a good bit of time observing them on my last research trip. They occur throughout the TCI archipelago, from the dense tropical dry forest of North Caicos, to the pine savannas of Middle Caicos and xeric outposts like the Ambergris Cays. They can also be found on nearly every vegetated rock cay.

 

DSC_0981

Male, Big Ambergris Cay

 

The males have an attractive yellow wash on the underside, with an orange-yellow dewlap that is really striking in the bright sun. The males display from elevated perches, but are wary when approached by nosy researchers.

 

The females are more cryptic, both in coloration and in behavior. They often have a light stripe down the back, or occasionally darker crossbars perpendicular to the light stripe.DSC_0977

On Big Ambergris Cay, on the southeastern edge of the Caicos Bank, the anoles especially favor an irrigated area near a decorative plant nursery. They are voracious, taking down large prey like this cicada (Ollanata caicosensis) on the right. Hopefully this voraciousness extends to interspecific interactions, as the “Festive” anole (A. sagrei) has now firmly invaded at least one island on the Caicos Bank (1; more on this in a future post).

Phylogenetically, Anolis scriptus is nested firmly within the radiation of Puerto Rican Anoles (most recently). Most closely related to a trunk-ground clade containing A. cristatellus, A. desechensis, and A. ernestwilliamsi, the TCI Anole exhibits a curious distribution, although they really do resemble A. cristatellus. Much of the terrestrial herpetofauna of the TCI is likely derived from Hispaniola (See TOC on this post), so what did A. scriptus do to get to the TCI? Our recent research on the A. cristatellus clade suggests that A. scriptus most likely dispersed from Puerto Rico around the start of the Pliocene. This could have been accomplished completely over-water, as currents and hurricanes push flotsam in a northwesterly direction from Puerto Rico. Alternatively, the species could have island-hopped on the formerly emergent Silver, Mouchoir, and Navidad banks, now a famous calving ground for the Humpback Whale.

Although I have not visited, the Crooked-Acklins Bank is a curious intersection of Bahamian and southern Bahamian herpetofauna, where the range of the southern A. scriptus (nearby Plana Cays) meets the range of the northern A. sagrei (Crooked Island). Furthermore, the bank is the northern limit of the Southern Bahamas Boa (Chilabothrus chrysogaster), which is replaced just a few kilometers northwest on the Great Bahama Bank by C. strigilatus. Finally, the handsome endemic A. brunneus (1,2,3) occurs there.

 

 

 

Aerial Behavior by Anolis pentaprion

 

Anolis pentaprion taxiing down the runway on a canopy tower at the La Selva Biological Station in Costa Rica. Photo by Vinicio Paniagua.

Anolis pentaprion taxiing down the runway on a canopy tower at the La Selva Biological Station in Costa Rica. Photo by Vinicio Paniagua.

Untitled-1Draco, the flying dragon, has borrowed an anole dewlap, so it’s only proper that anoles return the favor by developing gliding capabilities. It’s been long rumored that Anolis pentaprion, a twig anole from Central America, will launch itself off of perches in canopy and glide away, but now Steve Overbauer, Vinicio Paniagua, Craig Guyer and Mo Donnelly have documented just that in an interesting herpetological natural history note that appeared in the last issue of last year’s volume of Herp Review (Vol. 44, pp. 677-678).  Here’s what they have to say:

“Lizards with gliding or directed aerial descent behaviors are well known from the Old World Tropics (e.g., Draco, Ptychozoon), and snakes and frogs exhibiting these behaviors are found both in the Old and New World Tropics (Dudley et al. 2007. Annu. Rev. Ecol. Evol. Syst. 38:179–201). However, lizards showing directed aerial descent have not been reported from the New World Tropics. Here we report on directed aerial descent capability and behavior in Norops pentaprion, a canopy lizard from eastern Costa Rica, southern Nicaragua, and western Panama (Köhler 2010. Zootaxa 2354:1–18).

The initial discovery of this behavior in N. pentaprion was serendipitous in July 2001 when an individual was captured on a walk-up meteorological tower at canopy level (~ 25 m) at La Selva Biological Station in the Atlantic lowlands of Costa Rica. After identification, the animal was returned to the original location on the tower, but upon release to a horizontal tower brace, it executed a controlled aerial descent to a tree in the distance below. Individuals of N. pentaprion have been occasionally observed on our meteorological towers subsequent to our first observation of directed aerial descent. The lizards are typically at canopy level but are sometimes found well above the canopy on the highest levels of the towers (up to 42 m). While the typical response of N. pentaprion to the presence of personnel on the tower is to race down the tower or hide on the opposite side of vertical supports, the animals will occasionally jump from the tower to escape when approached. Since 2001 we have observed directed aerial descent by N. pentaprion from canopy towers on several occasions. In at least two instances the lizard landed at lower levels on the tower, but in other occurrences they covered substantial distance to adjacent trees including aerial rotations of near 180º. During more than one observation, animals appeared to glide with near-horizontal trajectories towards termination of the descent. Similar to some snakes, frogs, lizards, and ants showing directed aerial descent, N. pentaprion does not have strongly specialized features associated with gliding behavior such as skin flaps, skin extensions, or webbed feet. Norops pentaprion has a relatively flattened head and wide body. During aerial descent this lizard proceeds headfirst, with limbs partially extended and the body strongly flattened, a position that may take advantage of regions of relatively loose skin along the sides of the body (Guyer and Donnelly 2005. Amphibians and Reptiles of La Selva, Costa Rica, and the Caribbean Slope, Univ. California Press, Berkeley, California. 299 pp.).

At La Selva Biological Station this species is uncommon in the understory and is usually found on trees limbs. Norops pentaprion is a member of a closely-related group of anoline lizards subjected to a recent analysis of morphology and morphometrics (Köhler, op. cit.); these related taxa share similar body size characteristics with N. pentaprion and are frequently arboreal. Future observations of some of these species may result in the discovery of similar directed-aerial descent behavior. Canopy pioneer Donald Perry reported lizards with a rose dewlap parachuting between trees in the canopy in Costa Rican forests (Perry 1986. Life Above the Jungle Floor, Simon and Schuster, Inc. New York, New York. 170 pp.), but the species was not identified. In their description of Norops pentaprion, Guyer and Donnelly (op. cit.) indicated that parachuting behavior likely occurs in this species on the basis of our initial observations and those of Perry. Our repeated observations verify directed aerial descent in this species and confirm that the lizard observed by Perry was N. pentaprion, the only lizard in the region with magenta dewlap coloration.”

More Studies on Anole Chromosomes

karyotypes

When it rains, it pours. Research on the immense diversity in anole chromosomes was rampant in the 1970’s and early 1980’s, and then…nothing. Until, that is, the last two months. Not one, but two, papers appeared in Evolution, and now AA has learned of a paper on chromosomal variation in Norops clade anoles, recently published in Zoological Studies (click for a downloadable pdf). The paper, by Castiglia et al., examines karyotypes in Norops anoles and argues that karyological variation is in some cases consistent with our understanding of phylogenetic relationships within the group.

Abstract
Background: Neotropical lizards, genus Anolis (Polychrotidae), with nearly 380 species, are members of one of the most diversified genera among amniotes. Herein, we present an overview of chromosomal evolution in ‘beta’ Anolis (Norops group) as a baseline for future studies of the karyotypic evolution of anoles. We evaluated all available information concerning karyotypes of Norops, including original data on a recently described species, Anolis unilobatus. We used the phylogeny of Norops based on DNA sequence data to infer the main pattern of chromosomal evolution by means of an ancestral state analysis (ASR).

Results: We identified 11 different karyotypes, of which 9 in the species had so far been used in molecular studies. The ASR indicated that a change in the number of microchromosomes was the first evolutionary step, followed by an increase in chromosome numbers, likely due to centric fissions of macrochromosomes. The ASR also showed that in nine species, heteromorphic sex chromosomes most probably originated from six independent events.

Conclusions: We observed an overall good correspondence of some characteristics of karyotypes and species relationships. Moreover, the clade seems prone to sex chromosome diversification, and the origins of five of these heteromorphic sex chromosome variants seem to be recent as they appear at the tip nodes in the ancestral character reconstruction. Karyotypic diversification in Norops provides an opportunity to test the chromosomal speciation models and is expected to be useful in studying relationships among anole species and in identifying cryptic taxa.

Available Now: A New, Large Phylogeny of Anoles

BEAST estimated phylogeny of anoles. Circles on nodes represent posterior probability, black > 0.95, grey > 0.90, white > 0.70.

BEAST estimated phylogeny of anoles. Circles on nodes represent posterior probability, black > 0.95, grey > 0.90, white > 0.70.

In the course of our recent study on sex chromosome evolution in anoles (Gamble et al. in press) [AA post] we assembled a 216-species mitochondrial DNA phylogeny of anoles, the largest published to date (at least that we know of), yet containing only a little more than half of all recognized species. Although we collected new sequences for some species, our dataset is largely built on the hard work of others who collected and published on sequences from across the genus, such as Jackman et al. 1999, Poe 2004, Nicholson et al. 2005,  Mahler et al. 2010 [AA post], and Castañeda & de Quieroz 2011 [AA post].  Without access to data from these and other studies, we would have had a far less complete and robust tree for our comparative analyses.

There is a big debate going on now regarding what, where and how much data should be shared in association with publishing academically. I personally feel that providing easy access to those data used and generated during a study serves to accelerate the rate and increase the quality of scientific discovery. I am heartened that more and more journals are making data deposition a requirement for publication, although often this means little more than dumping sequence data to GenBank. Sites like Dryad, Figshare, and GitHub now provide open, permanent, and citable access to raw data, figures and, most importantly in my view, research products like alignments, code and analysis logs. In an effort to make our data as accessible and useful as possible we have archived our alignment, MrBayes and BEAST consensus trees as well as as the BEAST posterior distribution on the digital data repository Dryad [doi link]. It is our hope that other anolologists can use and improve upon these data to ask new, interesting questions and to build a larger, more complete view of the evolution of anoles.

Anolis stratulus Displaying

Note the arm waving and tongue protrusion!

httpv://www.youtube.com/watch?v=OP3rnPQJT6A

How to Set Up a Lizard Room to House and Breed Anoles

Thinking of setting up a room to maintain and breed lizards for research projects? Back in 2011, the good folks in the Glor Lab–which has done a stupendous job at breeding A. distichus–shared their accumulated knowledge in an 11-part series. Given the fog of memory, it seemed like a good time to remind the world of the existence of this primer, and put the links all together in one place.

So, with no further ado, here are the 11 posts in the “Evolution of a Lizard Room” undecology:

1: Introduction

2: Maintaining humidity

3: The watering wand

4: Crickets

5: The Shopvac

6: Generating food in house

7: Egg-laying

8: Egg inculation

9: Toe clipping

10: Custom cages for breeding experiments

11: Butterfly Cages

For another source of information, check-out the manual put together by the Brodie Lab at the University of Virginia.

Anolis allisoni Featured in Film on Reptile Diversity of Cayos Cochinos, Honduras

httpv://www.youtube.com/watch?v=WyGO_rcVEM0

We’ve had previous posts [1,2] on research on anoles of these islands. Nice footage of ctenosaurs and boas as well.

50% Off Anole Watches for Next 2.5 Hours

What better way to celebrate moving your clock forward than getting that anole watch–available in five ecomorphs–that you’ve been coveting. Pop on over to Zazzle.com now, and don’t delay, because the deal ends at 1 p.m. Eastern Daylight Time. Use code word sundaydeal22.

Page 161 of 297

Powered by WordPress & Theme by Anders Norén