50% Off Ecomorph Wristwatches Today

Crown-giant: A. equestris. Photo by Janson Jones

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

New readers to Anole Annals may be unaware of the AA Ecomorph Line of Wristwear. These snazzy chronometers will be the hit of any party, and would make an excellent gift for the punctuality-impaired. Our initial  release featured four of everyone’s favorite habitat specialists, but grass-bush anoles were subsequently added. Who knows what’s next? Suggestions? These retail at at zazzle.com for the low, low price of $47.95, but if you act quickly, there’s a 50% off sale through midnight tonight–use the code “SUNDAYDEAL47” at checkout. Don’t be the last one on your block to not have a lizard on your watch!

Trunk-Crown: Anolis allisoni

Crown-giant: Anolis equestris

Twig: Anolis occultus

Trunk-ground: Anolis marcanoi

Grass-bush: Anolis pulchellus

 

Great Video of Draco Displaying

Photographer and videographer extraordinaire Rick Stanley, whose work has appeared on AA previously, has just put together a short video of a number of Draco  species signaling and gliding. Some of the shots are extraordinary—it’s particularly cool to see them use their throat lappets and wings for communication. Check it out on Vimeo!

When Do Green Anoles Develop Their Red Dewlap Color?

Not red yet (or maybe not a male)

Adam Freedman is spearheading an effort to identify the genes responsible for anole dewlap color. He’s looking for information on the ontogeny of color in male green anoles, i.e., when the red first appears in a juvenile male. Here’s what he has to say: “In our ongoing work on the genetic basis of dewlap pigmentation, we are looking to investigate changes of gene expression as pigmentation emerges in juvenile male A. carolinensis. However, we do not have any information as to approximately how long after hatching red/pink pigment starts to be visible on the throat, even if perhaps the dewlap has yet to fully form. Does anyone have any information from following hatchlings that could inform our efforts?”

Can anyone help?

Anolis trachyderma Loses a Sleeping-on-Leaf Battle with a Snake

In January 2013 I was in the Amazon rainforest in Peru near Iquitos, looking for herps to photograph. This was my first significant visit to Amazonia and I was surprised at the dearth of anoles. I hadn’t (yet) caught up on enough anole literature to realize that the anole density in that area is so very much smaller than the anole density in the Caribbean or Florida. On a good anole-finding day, I only saw perhaps three or four during the day, and another five or six sleeping at night on leaves and twigs. Most of the anoles I encountered were Anolis trachyderma, such as these two sleepers. Alas, their leafy beds were perhaps not as safe as they might have hoped…

Anolis trachyderma sleeping on a leaf at night near Iquitos, Peru.

Anolis trachyderma sleeping on a leaf at night near Iquitos, Peru. 

Evolution 2014: Thermoregulatory Behavior Both Prevents and Promotes Evolutionary Divergence

 

Anolis cybotes sitting on a rock. Image from Discover Life.

Anolis cybotes sitting on a rock. Image from Discover Life.

Martha Muñoz presented data on how shifts in behavior constrain evolution of thermophysiology and drive morphological differentiation in the Anolis cybotes complex. The A. cybotes complex occurs across a large altitudinal range on the Caribbean island of Hispaniola and Martha was interested in whether and how lizards are adapted to thermal differences at different elevations. Martha tested whether body temperatures differ between lizards found in the different thermal habitats. Sampling more than 400 individuals, Martha did not find differences in body temperature between the populations. This is surprising because ambient temperature differed by more than 10 degrees Celsius between the low and high elevation localities.

So, if temperatures differ so dramatically among the different altitudinal habitats, how do lizards maintain similar body temperatures? Habitat use data from the two populations show that the high elevation lizards use rocky substrates more often than low elevation lizards, which are mostly found on tree trunks and other types of vegetation. Data obtained by using copper models that measure temperature as a lizard would experience it in a given habitat show that rock habitats are too hot at lower altitudes, but ideal at higher ones. This suggests that lizards keep their body temperatures stable by shifting from arboreal habitat type to rocks in higher elevations.

Martha then asked whether similarity in body temperature was matched with similarity in underlying thermal physiology. In ectotherms such as lizards, the ability to perform a task is dependent on temperature such that is optimized over a narrow range and then drops at lower and higher temperatures until the animal is immobilized. She found that lizards from all populations have similar preferred temperatures, and so their underlying physiologies do not appear to be evolving.

While thermoregulation keeps thermal physiology stable, the shift in structural habitat affects morphology. Martha measured morphological characters such as head shape, limb proportions, and lamella number to test whether habitat use has driven morphological change. Martha found that lizards in high elevations have wider and flatter heads and shorter limbs than populations in lower habitats. Thus, she found that a thermoregulatory behavior impedes physiological evolution while simultaneously driving morphological evolution.

Evolution 2014: Hot Lizards in the City, and How They Adapt to Urban Settings

IMG_3884

AA‘s man in Wisconsin, Greg Mayer, filed this report:

In Ernest E. Williams’ 1969 classic on the ecology of colonization, he identified Anolis cristatellus as one of the ‘minor colonizers’– not as widespread as carolinensis and sagrei, but having close relatives on Mona, Desecheo, and the Turks and Caicos. This natural colonization has now been augmented by human introductions– including Florida, Costa Rica, and the Dominican Republic, so that it is moving up on the colonization hit parade. In many of these places (e.g. Miami, Limon, Costa Rica), they have become established in highly human modified habitats.

Another sort of invasion has been taking place within Puerto Rico, as Kristin Winchell of U. Mass., Boston, has reminded us– cristatellus is also occupying (and thriving in) urban habitats in the densely populated parts of Puerto Rico. In her talk, coauthored by Graham Reynolds, Sofia Prado-Irwin, Alberto Puente-Rolon and Liam Revell, she shows that urban habitats present many challenges to anoles. The typical urban habitat is full of man-made surfaces (wood, masonry, glass, metal, oftrn painted), there is little or no canopy, the ground is made up largely of impermeable surfaces (so water runs of quickly), all of which lead to urban habitats being hotter, drier, and quite distinctive compared to the natural forest and woodland habitats. And let’s not forget the cats–all those awful, lizard-eating cats! (Apologies to Jerry Coyne!)

Kristin and company supposed, naturally, that all these environmental differences could lead to fairly intense selection for local adaptation. In particular, they supposed that city lizards should have longer legs (because running on larger, flatter surfaces is done better with longer legs), and that they would have more toe lamellae (to deal with the slippery, texture-less artificial surfaces, where claws are less effective for grip).

They tested these predictions at 3 paired sites near San Juan, Ponce, and Mayaguez (the natural site in San Juan was labeled by a sign at the site as “Una esmeralda verde en un mar de cemento”!) They confirmed their environmental characterization of cities, and found, as expected, that lizards perched on wider surfaces, did have more lamellae, and had longer legs–a resounding success. Interestingly, they did not find a change in perch height distribution between urban and natural. My one query would be about the change in lamellae number. High lamellae number is associated with narrower perch diameters– the numerous lamellae allowing the toepad to curl round to conform to the curved shape of the narrower perch (as shown in trunk crown anoles having more lamellae than similar-sized trunk ground anoles). I’ll have to think about what exactly I would expect in a trunk ground lizard adapting to man-made surfaces.

Kristin mentioned that they are planning a common garden experiment to test whther the differences have a genetic basis, as opposed to representing phenotypic plasticity. So we can look forward to more interesting results from this project.

Evolution 2014: Survival of the Fattest? Body Condition Not Related to Fitness in Lizards

Screen Shot 2014-06-24 at 9.52.48 AM Robert Cox, from the University of Virginia, presented his work examining the relationship between fitness and body condition in Anolis sagrei from the Bahamas. Many evolutionary biologists want to understand selection in wild populations. But in order to do that we need to measure fitness. Finding out who survives to maturity, who finds more mates, and who produces the most viable offspring, however, is quite difficult. For this reason, many researchers use body condition, or the ratio of body mass to body size, as a proxy for fitness.

One of the issues with using body condition as a proxy, however, is that it varies a lot, even within the same individual! When resources are plentiful, even less fit individuals can fatten up. And, when the going gets tough, even vigorous individuals fare poorly. For his study, Bob wanted to know whether body condition was actually a good proxy for fitness. He did this by actually measuring fitness in the wild by tracking survivorship in A. sagrei from the Bahamas. Most studies examining survivorship are performed over a single season or a few seasons, but Bob managed to gather data for 41 estimates of selection over 10 years of work. The numbers are impressive: He tracked survivorship over the summer, which is the height of the reproductive season, for 4,608 adults from 7 populations.

What he found was surprising – it turns out that, in these populations of A. sagrei, fatter is not fitter. He found no evidence for selection favoring better body condition in males or in females. He did find, however, strong selection for body size, rather than body condition. He also found correlational selection on body condition and body size – Specifically, he found that body condition did matter, but only in really large males. But this effect only explained a small proportion of the residual variance. The selection on body size, he found, was much stronger.

Bob’s work emphasizes that we, as a community, need to be wary of the traits that we use as proxies for fitness. In the case of A. sagrei, it didn’t matter what condition the lizards were in, except in the case of larger lizards. However, survival is only one piece of the fitness puzzle. To know how body condition influences fitness, we would ideally also want to know whether fatter individuals gain more access to mates and produce more viable offspring (i.e., more fecund). Together, Bob’s work highlights the importance of body size in survivorship and provides new evidence that fitness proxies need to be experimentally verified before being widely applied.

Evolution 2014: Physiological Divergence and Adaptive Radiation

IMG_3865

Alex Gunderson asked the question: What ecological axes are involved in ecological divergence during adaptive radiation, and what phenotypic traits occur along them?

Here are the specific questions he investigated:

IMG_3866

Alex pointed out that we usually talk about the ecomorphs that have diverged to use different parts of the structural habitat (e.g., twigs, canopy, grass, etc.), but less attenion is paid to divergence along the thermal niche axis, yet since Ruibal’s work in the early 1960’s, we’ve known such divergence occurs. Morphological divergence allows species to coexist by using different structural microhabitats; does divergence in thermal physiology have the same effect?

Most of the research involved the Puerto Rican cristatellus group, in which there are four pairs of sister species that differ in thermal environment, one more in the sun, one more a shade species. Some data also included Jamaican anoles. The study focused on two aspects of physiology related to thermal niche use, the critical thermal maximum temperature (CtMax) and the optimal temperature for sprint performance (Topt).

IMG_3868

Results: In 3 of 4 sister taxa, the species in the warmer environment had a higher CtMax. In 2 of 4, the species had a higher optimal temperature (in both cases, in the other comparisons, the species did not differ statistically).

Q2: What are the performance consequences of physiological divergence?

Alex measured temperatures in shaded and open habitats and asked what the risk was of a species overheating in each habitat. In shaded habitats, no species were at risk of overheating, but in open habitats, for three pairs of sister taxa, the species from the cooler environment was at greater risk of lethal overheating.

Q3: Does physiological divergence promote species co-occurrence?

In cases where morphologically similar species co-occur (same ecomorph), do they diverge in physiology? The answer: Invariably yes in Puerto Rico and Jamaica. When morphologically similar species co-occur, they always differ in thermal physiology. Thus, thermal physiological differentiation seems to be important for increasing local species richness.

Q4: How quickly does physiology evolve relative to morphology?

Surprisingly (at least to me), physiology evolves considerably more slowly than morphlogy.

Summarizing across this work, Alex concluded that physiological differentiation may be an important component of adaptive radiation. In many cases, workers studying adaptive radiation focus on morphology for a number of reasons, not the least of which that it is much easier to measure. But, by doing so, they may be missing an important part of the puzzle.

Evolution 2014: A New Method for Placing Species of Interest that Lack DNA on a DNA-Based Phylogeny, Illustrated by Anolis roosevelti

IMG_3861

Liam Revell gave a talk entitled “Placing cryptic, recently extinct, or hypothesized taxa in an ultrametric phylogeny using continuous charater data: a case study.” The title pretty much says it all and is a report on an ongoing project conducted with Luke Mahler, Graham Reynolds, and Graham Slater (sorry, I failed to think of anything clever about two authors named Graham. S’mores, anyone?).

The problem being addressed: we have a phylogeny for a group and want to add a taxon for which we only have continuous data, such as leg length, etc. How can we place it on the tree?

IMG_3862

The details are too technical for me to summarize (note: if you want to get to the good, anole stuff and don’t care about the method, skip to the next paragraph), but entails using a likelihood formula that Felsenstein developed for building trees with continuous characters (another note: you must have continuous characters for all taxa). The method works by considering all possible placements of the missing species. It computes the likelihood of the model and tree conditioned on the dataset to find the maximum likelihood tree including the taxon of interest that is consistent with the tree based on nuclear data for the other taxa (note that the tree must be ultrametric). Liam reported that even for trees with 100 or more taxa, an approximately exhaustive search for the ML position of the tip taxon is possible. Because the tree is ultrametric, all we’re interested in is where the attachment on the tree occurs, because the branch length is then determined by the ultrametricity of the tree.

Liam assured the audience that the drawing was not of co-author Graham Slater

Liam assured the audience that the drawing was not of co-author Graham Slater

Now for the good stuff: the method was illustrated with regard to Anolis roosevelti, the feared-extinct crown giant anole of the Puerto Rican bank. Known from only eight specimens and last collected in the 1930’s, things don’t look good for roosevelti. It has been assumed to be closely related to the Puerto Rican crown-giant, A. cuvieri, which it does look like. Moreover, Steve Poe’s morphological phylogeny supports this placement.

The analysis can reject many potential placements of roosevelti, but many others are not ruled out statistically; i.e., the likelihood surface is flat particularly close to root of tree, not surprising given the extensive morphological convergence of anoles. However, for what it’s worth, placement of roosevelti as a close relative to cuvieri is ruled out.

It will be interesting to see how this project develops and whether these results hold. More importantly, someone needs to go out and find a living roosevelti.

Evolution 2014: Cold Tolerance and Desiccation Resistance in Anolis sagrei

Mean CTmin for invasive (gray) and native range (green) populations of Anolis sagrei.

Mean CTmin for invasive (gray) and native range (green) populations of Anolis sagrei.

Most anole enthusiasts are familiar with the brown anole, Anolis sagrei, because it is a highly successful invader. Although it can be found as far away from its native Cuba (and nearby islands) as Hawaii and Taiwan, most of what we know about invasive populations of this species come from work conducted in Florida. A recent study by Jason Kolbe and colleagues demonstrated that physiological traits vary with latitude in A. sagrei from Florida. Specifically, cold tolerance (CTmin) and desiccation resistance were lowest at higher latitudes in Florida. Tamara Fetters, a graduate student in Joel McGlothlin’s lab at Virginia Tech, supplemented this work by adding data from a native population of A. sagrei found on the island of San Salvador in the Bahamas.

Box plots showing rates of evaporative water loss in invasive (gray) and native range (green) populations of Anolis sagrei.

Box plots showing rates of evaporative water loss in invasive (gray) and native range (green) populations of Anolis sagrei.

Tamara found that mean CTmin for A. sagrei from the Bahamas was close to 12°C, which was significantly higher than in Tifton, the most northerly population from Jason Kolbe’s study, but not significantly different from the lower latitude populations in Orlando and Miami. Similarly, she found that desiccation tolerance in native range A. sagrei was significantly higher than in lizards from Tifton, a result that she attributes to the lower relative humidity found at higher latitudes in Florida. Tamara’s future goals include measuring more physiological traits, such as oxygen consumption and heat tolerance (CTmax), along with morphological traits associated with desiccation resistance (scale number and scale area), for various invasive and native populations of Anolis sagrei.

Page 153 of 297

Powered by WordPress & Theme by Anders Norén