SICB 2015: Transcriptomic Analysis of Anole Growth Mechanisms

Photograph of a male Anolis sagrei from Christian Cox’s website.

Squamates vary widely in the magnitude and direction of body size dimorphism, which refers to the tendency for the sexes to exhibit different body sizes. Some lineages possess male-baised dimorphism while others have female-baised. The effects of testosterone on mediating sexual size dimorphism in different squamate lineages has long been the study of the Cox lab at the University of Virginia.  Christian Cox (of no relation to his advisor) has now reported some exciting steps forward in the search for the mechanisms regulating body size dimorphism in the brown anole, Anolis sagrei. Cox is in the process of carrying out a  transcriptome-wide analysis of the genes responsible for sexual dimorphism, with particular focus on examining the genes along the insulin growth factor-growth hormone axis (IGH-GH), which is the same pathway that was reported about yesterday.  In his experiment Cox implanted testosterone pellets under the skin of juvenile male and female lizards and then looked for differences in size and gene expression. Increased levels of circulating testosterone prompted increases in body size in both males and females grew to larger sizes, indicating that females have not lost the ability the respond to testosterone. But to better understand the growth axis controlling this difference Cox took a large step forward by also comparing gene expression in the liver of experimental (implant) and control (intact) animals. As the liver is a major regulator of growth via its regulation of the IGH-GH, Cox expected that this tissue would respond to testosterone treatment. This is precisely what Cox found. Specifically, he found a number of genes that are naturally regulated in different ways in males and females and additional genes that responded to the testosterone treatments. To conclude, Cox pointed out that an important next step will be to compare castrated lizards to those intact lizards with the testosterone implant to more clearly elucidate the gene network directly responding to testosterone. But perhaps the most exciting work will come with Cox and his collaborators examining the growth mechanisms of species with male-baised and female-baised patterns of dimorphism to more thoroughly understand how evolution has reshaped these gene regulatory networks during squamate evolution.

 

SICB 2015: If You Want to Invade, You Better Be Bold

Lauren and her poster

Lauren Davis presenting her work on invasion success in lizards.

As our planet becomes increasingly connected and humans facilitate novel species interactions, we must ask why some introduced species are destructive and others relatively harmless. Lauren Davis, a senior in Dr. Michele Johnson’s lab at Trinity University, conducted a study on behaviors, and their neural correlates, that may influence the invasiveness of non-native lizards. She compared the invasive Anolis sagrei to the native Anolis carolinensis, the invasive House Gecko (Hemidactylus turcicus), and the native Texas Banded Gecko (Coleonux brevis). They hypothesized that highly invasive species display more ‘bold’ behaviors (in this case, the number of enclosure boundaries crossed during an experimental period) and have larger and/or denser neurons in associated brain regions than less invasive species. While there are many documented behavioral trials with boldness in Anolis, geckos have received little attention in this regard. Lauren and her fellow researchers found that A. sagrei is indeed bolder than A. carolinensis, but that the two gecko species do not differ in traits associated with the boldness syndrome (Fig. 1).

Invasive Brown Anoles are bolder than native Green Anoles

Figure 1: Invasive Brown Anoles are bolder than native Green Anoles

The researchers also found that neuron size in brain regions known to influence boldness and aggression were opposite than expected values, so the team plans to analyze neuron density in these regions to help explain the observed behaviors. This is one of the first studies comparing behavior and brain morphology to invasion success, and it paves an exciting path towards our understanding of species interactions in our changing world.

Lauren is graduating in May, and hopes to work in conservation or public health before continuing her education in graduate school.

SICB 2015: How Do Anoles Get Big?

photo from;http://www.saumfinger.de/anolis_equestris.html photo by:Uwe Bartlet ?

One of the largest anoles, Anolis equestris (photo by Uwe Bartlett)

From the diminutive twig anole to the monstrous crown-griant anoles, Anolis lizards vary dramatically in their body size. Much research has focused on the patterns of body size variation among Caribbean species, how changes in body size are correlated with habitat differences among species, and rates of body size evolution upon invasion to new islands, yet an important question remains to be addressed in this body of literature, “how do anoles change body size?” S. Griffis and Dr. D. Jennings of Southern Illinois University at Edwardville are attempting to address this among Cuban anoles by searching for DNA sequence differences in known growth factories. But they are using what might be considered an unlikely model for lizard body size variation: dogs. Several years ago, Elaine Ostrander’s lab at the NIH uncovered that coding differences in the growth factors IGF were responsible for the body size variation in dogs. To a mechanist like myself, it was a surprise that this variation could be traced to coding differences in the genes, not to the levels of circulating growth factors. The authors of this poster are following Ostrander’s lead by looking for coding differences in genes involved with the IGF growth axis. But to keep their options open they are also collecting data on circulating hormone levels. When complete, if there are differences in the IGF growth axis contributing to differences in body size, Griffis and Jennings will find it.

SICB 2015: A Synthesis of Sexual Selection and Life History Perspectives

Anolis sagrei mating. Taken from the Cox lab website.

Anolis sagrei mating. Taken from the Cox lab website.

On the first day of SICB 2015 Robert Cox gave an interesting talk about reproductive investment and sexual selection in lizards. At the center of his talk was the striking notion that males and females are different biologically, yet should still be integrated into cohesive theories of sexual selection. According to Dr. Cox, past theory has generated mutually exclusive ideas about the costs of reproduction for each sex. Whereas theories about females have focused on life history and investment in the egg and offspring, theories about males have focused on mating investment. Cox stressed that this is overly simplified and doesn’t reflect biological reality,  as males and females also share many of the same costs of reproduction as well. Issues like growth, survivorship, energy storage, and parasite load are shared between the sexes. Dr. Cox is now trying to test how sex-specific reproductive mechanisms affect these shared reproductive constraints by surgically removing the gonads of each sex. Preliminary analyses show that parasite load appears to be a shared effect among the sexes regardless of the underlying mechanism (testosterone derived from testes versus estrogen derived from the ovaries). Studies directly comparing the underlying mechanisms of sexual dimorphic anatomy, physiology, and behavior are critical for the further development of sexual selection theory and for improving our understanding of anoles. Studies like Dr. Cox’s are an important step in that direction.

 

SICB 2015: Anoles in the Big City! Urban Environments and Predator Escape Behaviors

Screen Shot 2015-01-05 at 4.09.44 PM

Anolis cristatellus in Miami, Florida. Picture by Jason Kolbe.

Humans and wildlife are sharing the same spaces more and more frequently, but there’s still much that we do not know about how animal behavior is altered in urban environments. To address these questions, graduate student Kevin Avilés-Rodriguez (pictured below) and Dr. Jason Kolbe of the University of Rhode Island studied the responses of Anolis cristatellus to simulated predators in urban and natural environments in Puerto Rico. They found that lizards in an urban habitat had shorter flight initiation distances (the distance a simulated predator – in this case, Kevin – could approach before the lizard fled) than in a natural, forested site.  In addition, lizards’ predator-escape behaviors generally corresponded to the sizes of their perches and to their proximity to vegetation, but perch types differed between the urban and natural sites.  Whereas lizards in natural habitats tended to jump into nearby plants to escape, urban lizards tended to avoid capture by squirreling on larger, more isolated perches.  Kevin also reported that lizards perching on cement walls had adjusted their predator responses dramatically, as they generally did not jump or squirrel. In sum, this study suggests that habituation to humans and/or human-shaped habitats have altered the responses of these lizards to potential predators in important ways.

Kevin Aviles, stalking lizards in the field. Photo from Kolbe lab website.

Kevin Aviles, stalking lizards in the field. Photo from Kolbe lab website.

SICB 2015: What Causes Dorsal Crest Erections in Anoles?

We’ve all seen anole lizards extend their dewlaps, but the social displays of the many species of anoles also include the erection of a dorsal crest. But, what underlies the formation of these crests? Although many of us have talked about this, undergraduate John Ficklin, along with Morgan Gerace and Dr. Matthew Rand, all of Carleton College, aimed to find out and presented their work today at SICB. By injecting Anolis sagrei and A. carolinensis lizards with isoproterenol (a β-adrenergic agonist), they caused crest erection in males, but not in females. They then used histological techniques to examine the cellular morphology of the crest. What they discovered is that male anoles have a clearly-defined organ they dubbed the “crest capsule” (a structure female anoles lack), and when this capsule is filled with an edema from local blood vessels, the crest extends vertically. Collagen fibers appear to help maintain the crest’s vertical orientation during its display.  After inflation, the edema then drains into the subcutaneous space surrounding the capsule, causing the crest to deflate. They found no evidence of the involvement of muscles, cartilage, or vascular sinus in crest erection.

In sum, John Ficklin and his colleagues have solved one of the big questions of anole display!

SICB 2015: How Do Lizards Move in Nature?

Jerry HusakHow do lizards move in nature? Note the added emphasis on “in nature.” For many years people have studied the mechanics and patterns of of lizard movement and anoles have played an important role in this research. But today Jerry Husak of the University of St. Thomas in St. Paul reminded us that most of this research has focused on characterizing maximum performance ability, despite the fact that  animals rarely achieve this level of activity in nature. For example, most of the time many lizards are merely scurrying about on the ground and not sprinting at their full ability. Hence, although measuring maximal spring speed in the lab is a common theme, this measurement may not actually reflect what animals do in nature. Dr. Husak also stressed to the audience that animal locomotion is context dependent. Specifically, a lizard’s speed depends on whether it is moving in grass or over rocks, and whether it is foraging or fleeing from a predator. During his enlightening discussion, which included a description of him trying to sprint on a frozen Minnesota sidewalk, Dr. Husak described a series of biotic and abiotic factors that should be incorporated into models of terrestrial lizard movement.  Finally, he concluded by challenging our obsession with maximum sprint speed once again by asking whether running at top speed can lead animals to make to costly mistakes. Based on a set of foraging data, he showed that this may be the case.  Dr. Husak’s talk highlighted the importance of understanding the natural habits of lizard behavior and performance. 

SICB 2015: Convergence in Body Shape among Squamates

P. Bergmann

Patterns of Convergence in the Body Shape of Squamate Reptiles

SICB 2015 is off and running and what better way to kick it of than with a lizard talk? Phillip Bergmann of Clark University filled the 8:15 time slot on day one with an intriguing evaluation of broad-scale body shape convergence among squamates. This is a perennial topic on Anole Annals due to the well-studied patterns of convergence among Anolis lizards and, indeed, Dr. Bergmann highlighted anoles early in his talk. He asked whether common functional (ecological) situations lead to body shape convergence at large scales. Rather than search for global patterns of convergence, Dr. Bermann used hypotheses specific to the transformations that occur when lineages transitioned into new habitats. As he pointed out, it is not surprising to find convergence in body shape occurring throughout squamate – after all, convergence is ubiquitous across the tree of life. He concluded his talk highlighting what he feels are some of the most pressing “Big Questions” regarding convergence which included the methods we use to detect convergence, the role of constraints in shaping convergence, and elucidating the mechanisms underlying convergence. Ultimately it was a thought-provoking talk both from the perspective of squamate organismal diversity and the topic of convergence more broadly.

Videos and Photos of Honduran Anolis allisoni

Anolis allisoni displaying. Photo by Pablo Bedrossian

Sister WordPress blog pablobedrossian has a nice post with photos and videos of A. allisoni from Los Cayos Cochinos in Honduras.

Let SICB 2015 Commence!

When I was a kid, the first week of January used to be such a bummer for me because it meant that the holidays were over. But now the first week of each year means that the annual meeting of the Society for Integrative and Comparative Biology (SICB) is underway! The meetings run from January 3rd until January 7th, and there are 30 talks/posters this year about anoles! I won’t be attending this year, as I’m currently based out of Australia (AKA land of no anoles), so I’ll be looking forward to the posts on this blog to hear what’s new and exciting in Anolis research. Stay tuned!

Page 140 of 300

Powered by WordPress & Theme by Anders Norén