Greetings from Eildon, Australia, where the 2015 meeting for the Australian Society of Herpetology (ASH) is currently underway. Today is the first full day of talks and posters and I’m excited to learn what’s new and exciting in herpetology. Although the focus is predominantly on Australian amphibians and reptiles, there are several presentations on non-Australian herpetofauna, as well. Anoles are also represented as I will be giving a talk on my work on Hispaniolan anoles and Emma Sherratt will be speaking about her work on fossil anoles. If you would like to see what’s going at ASH, feel free to follow the conference on Twitter using #ASH15.
The Faculty of Arts and Sciences at Harvard University has a quaint but lovely tradition of reading a “memorial minute” to honor deceased members of the faculty. I recently came across the minute concerning Ernest Williams, which was presented in 2009 and published in the Harvard Gazette.
At a Meeting of the Faculty of Arts and Sciences on May 19, 2009, the following Minute was placed upon the records.
Ernest Williams was a man of many contrasts. Biology at Harvard in the third quarter of the last century was full of outsized personalities—titans in the field with strong opinions and no reservations about expressing them. In such company, Williams appeared a wallflower, seemingly wishing to be anywhere but in the midst of their arguments. Yet, one-on-one, Williams had an incisive wit and a dry sarcasm—discussions with him were always stimulating and provocative as he never missed a chance to challenge one’s thinking, sometimes quite pointedly.
To some, Williams’s work came across as old-fashioned. His subject, systematics — the study of the evolutionary relationships of species—is among the oldest in science, and his papers — florid and opinionated and, above all, long—recalled an approach to scholarship no longer in vogue. Yet much of his work was boldly innovative; some papers are still widely cited, and in several cases his work was well ahead of its time, presaging approaches to the study of evolutionary biology that were not to catch on for several decades.
Ernest Edward Williams was born January 7, 1914, in Easton, Pennsylvania, the only child of middle-aged parents. Like many boys, particularly of that time, he grew up loving nature and spent many hours capturing salamanders and other creatures. After attending Lafayette College, Williams joined the Army, serving in Europe during World War II. Upon his return, Williams entered graduate school at Columbia University, where he was the last graduate student of the great anatomist William King Gregory.
Williams’s doctoral thesis focused on the structure of the neck vertebrae of turtles and how variation among species reflects their evolutionary heritage. The work demonstrated the combination of careful attention to detail with the ability to interpret results in the broader context that was to characterize Williams’s career. More than fifty years later the work is still foundational in understanding the evolution of turtle diversity.
In 1950, after completing his degree, Williams moved to Harvard, where he initially served as a laboratory coordinator for the anatomy course of the legendary paleontologist Alfred Sherwood Romer, then subsequently was appointed as an assistant professor and made coordinator of a General Education course on evolution. The Museum of Comparative Zoology’s Curator of Herpetology, Arthur Loveridge, retired in 1957, and Williams was appointed to take his place. In 1970 Williams rose to the rank of professor and in 1972 became Alexander Agassiz Professor of Zoology.
Williams initially focused on continuing his work on turtle systematics, leading to a series of publications including a still-important treatise published with Loveridge in 1957. Williams soon realized, however, that the museum’s collections were inadequate for the detailed analysis he conceived, which required large samples from many populations. This recognition that the museum’s herpetological collections were wide in scope, but lacking in depth, led Williams in two directions. First, it compelled him to work greatly to expand the Herpetology Department’s holdings, ultimately leading to a quadrupling of the department’s collections (to more than 300,000 specimens) by the time he retired as curator in 1980, making the Museum of Comparative Zoology (MCZ) one of the greatest herpetological repositories in the world. Second, it led Williams’s attention to focus on lizards in the genus Anolis, a very species-rich group from the Caribbean and Central and South America. A previous curator of herpetology and director of the MCZ, Thomas Barbour, had extensively collected anoles in the Caribbean; Williams, whose focus was much more evolutionarily-oriented than most systematists of the day, recognized that this group could be a model for studying large-scale evolutionary and biogeographical phenomena.
And, indeed, they were, and still are.

Photo by Miguel Landestoy, from the New Yorker’s website
Well, actually it first came to light during a BBC expedition to film solenodons, but more recent legwork by AA contributor Miguel Landestoy has rediscovered the animals near Pedernales in western Dominican Republic. Miguel’s efforts are chronicled in a delightful article in the New Yorker.
Muscle fiber size can vary based on the frequency of use, or due to the fusion of multiple mononucleated myoblasts during development to form multinucleated fibers. To test if variation in muscle fiber size was due to frequent use or due to differences in development between species, Jacob Stercula of the Johnson lab examined the fiber size and number of nuclei for the ceratohyoid and the retractor penis magnus (RPM) of nine species of anoles. Most species exhibit a positive relationship between fiber size and the number of nuclei in both muscle types. Among species, this positive relationship between fiber size and the number of nuclei exists in the RPM muscle when accounting for phylogeny using independent contrasts, whereas the ceratohyoid shows a positive trend, though the relationship was not significant. This suggests that for the RPM, muscle fiber size is evolutionarily conserved and is due to differences in development among species rather than differences in the amount of use. The size of the ceratohyoid muscle however, maybe be influenced by both the frequency of use and the fusion of myoblasts during development.
2014 was a good year for AA. 220,000 viewers in 195 countries (and that doesn’t count the 200 subscribers who get each post hand delivered to their email inbox–sign up now!*), 307 new posts, 1570 page views on one day. Guess which post that was? And who do you think the most frequent commenter was, with 76 comments? WordPress has kindly provided a list of information and stats, which you’re welcome to peruse.
*to do so, scroll down and look for the subscribe box on the right side of the page
A new study out in Biology Letters by myself, Devi Stuart-Fox, Terry Ord and Indraneil Das found that two populations of the same species of gliding lizard – Draco cornutus – have diverged in gliding membrane colouration to match the colours of falling leaves in their respective habitats. An Anole Annals post by Ambika Kamath earlier this year looked at the study briefly after we’d spoken at the Animal Behaviour Conference in Princeton, but I thought I’d elaborate a little on working with Draco and how we devised the falling leaf camouflage hypothesis.
Draco are small arboreal agamids, found throughout South-East Asia. They have extendable gliding membranes that they use for gliding between trees in their habitats. They also have dewlaps – like the Anoles – used in broadcast display to communicate with conspecifics. My work generally focuses on the diversity in dewlap colouration among species and how differences in habitat influence signal efficacy and may lead to speciation. This involves measuring the colours of lizards as well as taking behavioural footage of individuals of different species to look at how the patterns of display differ.
httpv://youtu.be/I_oeY9cIWOg
Footage by Terry Ord
Most Draco are very difficult to spot as they are well camouflaged and perch at least 3 metres high in their trees. Given this, searching for movement or displays are the best ways to locate an individual. Walking through the forest, we would often see in our periphery what we would initially dismiss as a falling leaf, only to later discover it was a gliding lizard. Indeed we quickly learnt to focus on ‘falling leaves’ when on the lookout for Draco and this was quite a fruitful approach. Indraneil Das was the first to suggest the gliding membranes were coloured to look like falling leaves – but it was a couple of years until we started to think about how we might test the idea. It became difficult to ignore how similar the fallen leaves on the ground at various study sites so closely resembled the colours and patterns of the gliding membranes of Draco species living in those immediate areas.
Then we made to trip to Niah Caves National Park in northern Borneo and came across a second population of D. cornutus.

Birds are lovely animals. Our avian friends swoop through the air, defecate on field equipment, and consume lizards. What’s not to like?! Well, their shoulder region, for example. Lost interclavicle, reverted muscle pathways, and so many other anatomical adaptations that appear crucial for the modern avian life style, but that are hard to explain in a gradual-evolutionary context. Reconstructing the structural evolution of the avian shoulder remains a challenging task to students of biomechanics and kinematics. When I left my European homestead to enter the Canadian realm of biological sciences, I was hoping to solve the evolutionary mystery of the avian shoulder, at least in part. Alas, the discovery of anoles sent me on a much more convoluted journey.
Here is the first tale that resulted from that endeavour (Tinius & Russell 2014).
The first anole paper of 2015 is a doozy. Everyone loves to roast marshmallows around a campfire. Turns out that “everyone” includes crested anoles, A. cristatellus! Read all about it in the paper by Norman Greenhawk in the new journal Life: the Excitement of Biology.

Michelle Oberndorf of the Johnson Lab (Photo courtesy of the Johnson Lab website)
Anolis visual display can come in two flavors: static and dynamic. Static displays are those that are involve permanent morphological structures, whereas dynamic displays involve movement of physical structures. Michelle Oberndorf of the Johnson lab asked if structures involved in both static display (tail crest) and dynamic display (dewlap size), were related to body condition or fighting ability (head size) in males and females of two species of anoles. She collected SVL, mass, head morphology, tail crest size, and dewlap size data from 50 males and 50 females of A. cristatellus and A. gundlachi. She found that in males, tail crest area was correlated with body condition in A. cristatellus. In male A. gundlachi, tail crest area was correlated with head size, and dewlap size, while dewlap size was correlated with body condition and head size. She found no relationships between any of the traits in females of either species. These results suggest that both the dewlap and the tail crest may communicate information about male quality and potential fighting ability.
The uninformed often view parasites with disdain, disgust, and/or condemnation. These views however ignore the various ecological roles that parasites play. My colleagues and I are some of the lucky few who look at these organisms through ecological lenses and marvel at what we find.
As part of the ongoing research on the exotic invasive brown anole (Anolis sagrei) populations in Taiwan, we collected and examined some specimens for parasites. In addition to the brown anoles, we also examined specimens of Eutropis longicaudata, Eutropis multifasciata, Japalura polygonata xanthostoma, Japalura swinhonis, Plestiodon elegans, and Sphenomorphus indicus, that were collected opportunistically from Taiwan.
We recently reported on the parasites we recorded in 52 of the 91 lizards examined, and the infected individuals harbored one to three species of parasites. We identified the parasites as Cyrtosomum penneri, Kiricephalus pattoni, Mesocoelium sociale, Meteterakis govindi, Oochoristica chinensis, Oswaldocruzia japalurae, Parapharyngodon maplestonei, Pseudabbreviata yambarensis, Pseudoacanthocephalus bufonis, or Strongyluris calotis. We also recorded an unidentifiable acanthocephalan infective juvenile (cystacanth) and an unidentifiable larva of a cestode (sparganum).
Based on the relatively few parasite species recorded from A. sagrei in Taiwan, compared to the large number of parasites reported from A. sagrei throughout its native and introduced range, it is clear that these lizards have been liberated from many of their parasites.
The nematode, Cyrtosomum penneri, which was introduced into Taiwan along with A. sagrei, was a common parasite in the A. sagrei we examined. None were recorded in any of the other lizard species examined. This is most likely because these nematodes are transmitted from one host to another during copulation and appears to have a fair degree of host specificity, so the spread of C. penneri to native lizard species in Taiwan is suggested to be very unlikely. An interesting conclusion that can be drawn from the presence of C. penneri in specimens from both the southwestern and eastern populations of A. sagrei in Taiwan is that sexually mature lizards were introduced into these localities and that they most likely have a common founder population.
Our study did also confirm that the digenean, Mesocoelium sociale, and the pentastome, Kiricephalus pattoni are acquired parasite of A. sagrei in Taiwan. Unfortunately, although their infections can be expected to be detrimental to the A. sagrei host, their infection frequencies are relatively low in the A. sagrei populations in Taiwan, and thus have no observed significant impact on the population sizes.
Another interesting finding of our study was that even though the nematodes, Pseudabbreviata yambarensis and Strongyluris calotis, are very common in Japalura swinhonis, a species that is very often sympatric with A. sagrei in Taiwan and which also has a very similar diet as A. sagrei, they have not been found in any of the A. sagrei examined to date. This could be a result of an absence of transmission routes that could be specific to J. swinhonis and thus protect introduced species from the native parasites, or the host-specific limitations of the parasites prevent them from adapting to a new hosts, i.e., A. sagrei.
I would like to encourage everyone involved with research to include parasitological studies in their herpetological works to expand our understanding of host-parasite ecology.