ASH 2015: Size and Coloration of Draco Dewlaps

Screen Shot 2015-01-29 at 8.16.24 PM

A slide from Danielle Klomp’s talk showing how color is used in communication by some species of lizards. Check out the quick guest appearance by an anole.

The diversity of anole dewlap shapes, colors, and patterns is one of their most distinctive features. But anoles are not the only squamates with flashy dewlaps. When it comes to such accoutrements, anoles have some stiff competition from their Agamid cousins in the Indo-Pacific region, the ‘flying’ dragons (Draco). Draco lizards don’t really fly, of course. Rather, they can laterally expand their ribs and the connecting membrane to create a ‘wing’, which they use to glide between trees in their habitats. If you haven’t seen how they do this, it’s more than worth a watch. Lest you think anoles get left behind in this respect, we do know that some anoles glide, as well, even if they don’t exhibit the impressive wing-like structures that Draco lizards have.

 

Slide from Danielle's talk showing Draco lizards and their geographic distribution.

Slide from Danielle’s talk showing Draco lizards and their geographic distribution.

As I learned at Danielle Klomp’s talk at ASH 2015 last week, their dewlaps are almost as impressive as their gliding ability. Danielle is a PhD student working with Devi Stuart-Fox and Terry Ord and her dissertation has focused on studying the evolutionary ecology of Draco lizards. This past week she presented her work on these lizards’ dewlaps and what role they may play in sexual selection. Danielle examined dewlap size and coloration in 13 species of flying dragons. Overall, she found a strong negative correlation between color contrast (meaning they stand out relative to background coloration) and dewlap area in male lizards. Thus, she found that male dragons either had big dewlaps or conspicuously colored dewlaps, but not both. These results suggest that sexual selection for male conspicuity is occurring, but why can’t lizards exhibited large, conspicuously-colored dewlaps? Danielle suggested that having dewlaps that were both conspicuous in color and size were either too risky (meaning that they would be considerably more vulnerable to predation) or too costly to produce or maintain, though the precise mechanism underlying this pattern remains uncertain.

Lizard Olympians Benefit from Training Just Like Their Human Counterparts

 

Husak Lab member Erik Sathe putting a lizard through its paces. Photo by Jerry Husak

Husak Lab member Erik Sathe putting a lizard through its paces. Photo by Jerry Husak

AA contributor Jerry Husak has just published a great paper in The Journal of Experimental Biology on the effect of training (=practice) on the sprinting and endurance capabilities of green anoles. The Inkfish blog on Discover magazine’s website has written a brilliant description of the study:

Athletes don’t normally need to be chased down the track to get their training mileage in. But a green anole lizard is not a normal athlete.

Scientists wanted to know whether it’s possible to train a lizard at all. Human athletes and other mammals perform better with consistent exercise, but is this universal? Can a reptile increase its stamina? What about its sprint speed? So the scientists became lizard athletic trainers, which really means lizard harassers. Results were mixed.

The green anole lizard, or Carolina anole (Anolis carolinensis), is a common laboratory species. Basic rules of its biology—for example, how it responds to exercise—ought to apply to other vertebrates, such as humans. In the past, scientists have successfully used exercise to increase endurance in frogs, birds, alligators and crocodiles. But the same efforts with lizards have been inconclusive.

Jerry Husak, a biologist at the University of St. Thomas in Minnesota, studies lizards with the help of undergraduate researchers. He and his students decided to try creating “Olympic lizards.” They would train their subjects for two kinds of athletic ability, neither of which was totally foreign to the reptiles. Some lizards would become endurance athletes; this long-distance locomotion would mimic the slow patrolling and foraging anoles do in nature. And other lizards would become sprinters; in nature, they use bursts of speed to escape predators.

Thirty lizards were divided into sprinters, distance runners, and a control group. The sprinting track was a dowel two meters long and five centimeters wide, propped at a 45-degree angle. The researchers chased the lizards up the dowel and used infrared beams to measure their fastest speed. Sprinters “trained” three days a week for eight weeks. Gradually, the researchers increased the training intensity by making the lizards do more runs per day.

Meanwhile, the distance runners did their training on a treadmill. The researchers set the treadmill to a low speed and gently prodded the lizards with a paintbrush to keep them moving. These athletes had to stay on the treadmill for 30 minutes at a time, or until they were exhausted. (How do you know anoles are exhausted? “When we flip them over onto their backs and they can no longer flip themselves back onto their feet,” Husak explains. Glad he’s not my trainer.) These lizards, too, exercised three times a week for eight weeks, while the steepness of the treadmill gradually increased.

At the end of the training regimen, the researchers tested all their lizards a final time. The distance runners had clearly improved. On a fast treadmill, the endurance-trained lizards could run for almost three times as long as they had initially. Blood samples showed that their hematocrit levels—a measure of red blood cells, which carry oxygen—had also increased. And dissecting the limbs of dead lizards revealed that their muscle fibers had grown, just as they do in exercising mammals.

The sprinting lizards were a little more disappointing. In their final trials, they didn’t run any faster than they had before training. But their muscle fibers had also grown. Husak suspects that these athletes had actually improved—they just didn’t feel like performing.

“I definitely think the sprint-trained ones increased their sprinting abilities,” Husak says. But after the lizards had spent so much time being handled by humans, he says, “We just couldn’t motivate (i.e., scare) them enough…to run as fast as they could.”

There’s not likely to be a lizard Olympics anytime soon. Creating athletic anoles isn’t the only goal of Husak’s research, though. He’s ultimately interested in the tradeoffs that come with being a good athlete. Animals that spend more energy on reproduction, for example, may have to sacrifice life expectancy or immunity. Do the same tradeoffs happen when animals spend their resources to build beefy muscles?

Husak has gotten closer to answering that question by showing that lizards can be trained. Now he just has to figure out how to scare them into performing their best—because even if the biology of exercise is the same across vertebrates, the power of a “Just Do It” poster isn’t.

Anolis lividus Is HHMI Biointeractive’s Image of the Day

The post doesn’t say much, but it’s nice for this lovely anole to get the attention it deserves!

If you search for photos of A. lividus online, there aren’t all that many. Several more nice ones have appeared previously on AA, such as this one:

Photo by Jim Hewlett

 

and here’s one from Calphoto:

If you want to read more on this not-well-studied species from an island recently ravaged by volcanoesAA is the place [1,2].

 

 

 

Peruvian Anole Needing Identification

Photo by Dick Bartlett.

Photo by Dick Bartlett.

Dick Bartlett found this lizard a week ago, deep in the rainforest along the Rio Mazon, Dpto Loredo, Peru. He says “The blue irises initially indicated transversalis but the more I’ve thought about it, the more unsure I have become.” Anyone able to identify it?

Rodent Sticky Trap Snags a Rat and a Lizard

IMG_1443

I have heard of the use of sticky traps for studying lizards, though a colleague told me they seem to be of uncertain safety for anoles, as his recapture records were almost nonexistent.

We finally gave up on the “bio-warfare” of feline-infantry to a recent rodent invader to the house, and had to put this trap out last night inside the house. This morning we found the intruder caught in it (juvenile Rattus sp.), but the domestic service lady put it for a minute in the backyard and not long after an Anolis distichus was also caught, probably in the seek of flies stuck to the trap (see photos). She then called me and I used an old trick, pouring (vegetable) oil in the prey in order to make it come loose from the trap’s glue surface.IMG_1444

Could the oil create a thermic or clinging capability problem to the lizard? It obviously forms a coating above scales, hence I rubbed it with napkins and then placed it back to its favorite microhabitat (trunk bark) for it to bask and recover.
IMG_1445

The lizard (38 mm SVL) was toe-clipped and marked in the belly and put back in the backyard. Hopefully we can have a recapture in some days (if cats and sparrows don’t get it first).
IMG_1446

New Study on the Habitat Use of Day Geckos

Phelsuma guimbeaui from Mauritius.

Despite the brilliant colors, the natrual history of day geckos (Phelsuma) is little known. The most recent issue of Herpetological Conservation and Biology includes a very nice study on the habitat use of two Mauritian species, showing that they are most abundant in native forest and pointing out that, thanks to their pollinating services, they are keystone species. An interesting point is that even though day geckos are essentially Old World anole doppelgängers, in their habitat use they differ in rarely leaving the trunks of trees. One of the authors is legendary ornithological conservationist Carl Jones, almost single-handedly responsible for preventing the extinction of several Mauritian bird species.

Here’s the abstract:

Many fragile ecosystems across the globe are islands with high numbers of endemic species. Most tropical islands have been subject to significant landscape alteration since human colonisation, with a consequent loss of both habitat and those specialist species unable to adapt or disperse in the face of rapid change. Day geckos (genus Phelsumaare thought to be keystone species in their habitats and are, in part, responsible for pollination of several endangered endemic plant species. However, little is known about key drivers of habitat use which may have conservation implications for the genus. We assessed the habitat use of two species of Phelsuma (Phelsuma ornata and Phelsuma guimbeaui) in Mauritius. Both species showed a strong affinity with tree trunks, specific tree architecture and are both restricted to native forest. Tree hollows or cavities are also important for both species and are a rarely documented microhabitat for arboreal reptiles. Both P. ornata and P. guimbeaui avoid areas of high disturbance. Our data suggest that active conservation of Phelsuma requires not only the protection and restoration of native forest, but also implementation of forestry practices designed to ensure the presence of suitable trees.

SICB 2015: Thermal Biology and Gene Flow in Bahamian Anolis sagrei

Anolis sagrei. Photo from Wild about Spain

An important problem in climate change biology is understanding how evolutionary dynamics will influence the ability of populations or species to persist as environmental conditions change. In general, there are three ways that such evolutionary change can occur: (1) novel beneficial mutations can arise de novo; (2) rare alleles within a population can become beneficial and sweep to fixation; or (3) gene flow between locally adapted populations can introduce beneficial alleles to populations that did not previously have them. The potential for this latter scenario was investigated by Mike Logan using A. sagrei on a system of cays off of the Bahamian island Exuma. Mike measured operative thermal environments on the cays and Exuma, as well as temperature-dependent physiology of the animals in each population. He found that the islands differed in mean temperature and variability, and that optimal temperatures for physiological performance correlated with mean island temperature. Next, Mike used genetic markers to estimate population structure and rates of migration between the keys and the mainland. He found evidence for extensive gene flow between the populations, but with an interesting twist: gene flow was highest between populations that had the most similar thermal environments. Within the context of climate change, the observation of gene flow among islands based on thermal conditions suggest that as conditions change across a species’ range, beneficial alleles may be able to move into the populations where they are needed most. Mike’s work adds an important piece to an emerging picture about the interplay between standing genetic variation, local adaptation, and responses to global change.

ASH 2015: Fossil Anoles Provide Clues into Ecological Diversification

 

Emma Sherratt gives her talk on fossil anoles

Emma Sherratt gives her talk on fossil anoles

The annual meeting for the  Australian Society of Herpetology (ASH) is wrapping up here today in the lovely town of Eildon, Australia. Just because we’re a continent away from the native distribution of anoles doesn’t mean that anoles were not represented at the meeting. Yesterday afternoon Emma Sherratt, new faculty at the University of New England in Armidale, Australia, presented some of her post-doctoral work on fossil anoles preserved in amber. Emma began by saying that Caribbean anoles represent one of the oldest examples of extant adaptive radiations. Despite the age of this radiation, most of the work on the Caribbean anoles (and other adaptive radiations, for that matter), has focused primarily on living species, with historical inferences drawn from DNA analyses. She pointed out that historical insights based on analyses of extant species only should be treated with caution, unless there is corroborating information from the fossil record.

We know, she said, that islands are typically inhabited by a single lineage of ecomorphs (with subsequent diversification within ecomorphs). The fact that most ecomorph groups are represented by a single lineage on an island suggests that once an ecomorph niche is filled, it cannot be replaced, an idea known as ‘niche incumbency’. She argued that we can use fossils to assess that hypothesis – if fossil anoles pertain to same lineages of ecomorphs (e.g., the cristatellus clade of trunk-ground anoles, or the carolinensis group of trunk-crown anoles), then that would support the idea that ecomorph niches were only filled once. If extinct anoles fell into different lineages of ecomorphs, distinct from those that are extant today, then that would support the idea that ecomorphs could be replaced on islands, which would suggest that niche incumbency need not be occurring. Of course, it could also be possible for niche incumbency to have occurred if there were two lineages of the same ecomorph present on the same island, as long as the incumbent lineage drove the more recent one to extinction. But the hypotheses proposed by Emma were certainly a reasonable first pass to understand the origin of ecomorphs on the Caribbean islands.

Anoles have been fossilized in Hispaniolan amber, which we know to be about 15-20 million years old. All you folks who are anxiously awaiting the next installment of Jurassic Park be advised – this means that the famous amber used to get dinosaur DNA is far too young, as the dinosaurs (save for birds, of course) went extinct about 62 million years ago. For her study, Emma accessed an impressive 38 anole fossils preserved in amber. By far this is the largest data set of fossilized amber anoles ever examined. And, beyond their utility for understanding the process of diversification, anoles caught in amber are stunning fossils and the high resolution reconstructions that Emma makes using x-ray CT scans are equally impressive.

Emma found strong evidence that Hispaniolan fossil anoles fall into known ecomorph categories. To determine this she compared morphological details from extant species to the fossil anoles. Overall she found substantial morphological variation in the fossils, particularly in 20 of the best preserved and most complete fossils. Amazingly, Emma found that some of the fossils fell very clearly into the trunk-crown, trunk, trunk-ground, and twig ecomorph classes! She was further able to determine that the trunk-crown fossils fell into the chlorocyanus group of extant Hispaniolan lizards, and, with less confidence, evidence that the trunk-ground lizards fell into the cybotes group of extant Hispaniolan lizards. Thus, the results are suggestive that, once an ecomorph niche is filled, it prevents other lineages from evolving into it, which is consistent with niche incumbency. Obviously it is not possible to fully rule out the alternative – that species of other ecomorph lineages existed in the past – but certainly the results are a tantalizing glimpse into the processes that forged the current Caribbean fauna. In short, she found that most ecomorphs recognized today are not only present in the Miocene fauna, but also are represented by members of the same clades. Together, her results were consistent with the idea that niche incumbency occurred in the Caribbean radiation of anoles, which would indicate that interspecific interactions have regulated morphological diversity for millions of years.

A Very Orange Brown Anole

We’ve had a number of previous posts on orange-colored brown anoles, but here’s a nice blog post that discusses them a bit further, with a bonus photo of a yellowish green anole. Christina Chappell, the majordomo of serenityspell.com, reports that the lizard was seen in the northern part of the Everglades. And, no, in case you’re wondering, the photo was not altered in any way.

Australian Society of Herpetology 2015 Meeting: Follow #ASH15 on Twitter

Screen Shot 2015-01-22 at 12.01.49 PM

Greetings from Eildon, Australia, where the 2015 meeting for the Australian Society of Herpetology (ASH) is currently underway. Today is the first full day of talks and posters and I’m excited to learn what’s new and exciting in herpetology. Although the focus is predominantly on Australian amphibians and reptiles, there are several presentations on non-Australian herpetofauna, as well. Anoles are also represented as I will be giving a talk on my work on Hispaniolan anoles and Emma Sherratt will be speaking about her work on fossil anoles. If you would like to see what’s going at ASH, feel free to follow the conference on Twitter using #ASH15.

Page 133 of 297

Powered by WordPress & Theme by Anders Norén