JMIH 2016: Escaping in the City

2016-07-10 09.00.19

Kevin Aviles-Rodriguez, from the Revell lab at U. Mass. Boston, gave the second urban anole-themed talk of the meeting. Kevin presented his Master’s thesis work that he conducted with the Kolbe lab at U. Rhode Island in a talk titled, “Structural habitat alterations caused by urbanization influence escape behavior of a common lizard.”

Urban habitats are drastically modified and present novel resources and threats for animals that persist and utilize these spaces. Structurally, urban habitats have different types of surfaces that are smoother, broader in diameter, and often more vertically oriented (90° angle). Urban habitats also present abundant and novel food resources in terms of human food and insects attracted to lights and garbage. But with the abundance of food and novel niche space also comes an abundance of novel predators such as cats and dogs kept as pets.

Kevin wanted to know how Anolis cristatellus from San Juan, Puerto Rico and South Miami behaved in urban habitats compared to forest habitats when perceiving a predation threat. Although there are obvious costs of not escaping a predator successfully, there are also costs of fleeing when not necessary in terms of lost feeding opportunities and disrupted social interactions (mating, territory defense). Kevin wanted to know if the urban environment influenced escape behavior decisions. Specifically, he had two objectives: (1) To quantify escape behavior (squirreling, jumping, or sprinting) and how this relates to different types of perches found in urban areas. (2) To measure flight-initiation distance (FID), or how close one can approach an animal before it flees, to see if there are differences between forest lizards and urban lizards.

2016-07-10 09.07.18Kevin found that as perch diameter increases, the probability that a lizard will squirrel around a perch or sprint up the perch increased and the probability of jumping decreased. Interestingly, when he also looked at perch use, he found that the majority of lizards were using perches of thinner diameter where the probability of jumping was highest. Urban lizards also tended to use more isolated perches, which he defined as the number of nearby potential perches within 1 meter. When nearby perch density was lower, lizards tended to jump less – perhaps not all that surprising since they have fewer places to jump to. Kevin also found that escape strategy differed based on the type of perch used. In urban habitats, on trees and on metal posts lizards squirreled more frequently than they did in forest habitats. Interestingly, on cement walls (e.g. buildings) lizards did not jump at all and mainly sprinted to escape. 2016-07-10 09.10.05Kevin offered a few possible explanations for this trend. For one, building perches tend to be more isolated than trees and so it may simply be that lizards on these substrates have nowhere to jump to. A second possibility is that the lizards have trouble jumping from these perches since they are more vertical than the optimal angle for jumping (39-42°, Toro et al. 2003).

In his final analysis, Kevin found that flight initiation distance (how close you can get to the animal before it flees) was very short for animals perched on urban trees and metal posts. In fact, he commented that on some occasions he was able to get close enough to touch the lizard before it fled! This difference was significantly shorter than for animals perched on trees in the forest and for animals perched on painted concrete walls in the city.

JMIH 2016: Exploring Social Networks and Species Coexistence of Anolis lizards

Reptiles are often thought of as solitary and not social animals. However, all of us who study anoles know that Anolis are anything but solitary animals. Spend a few minutes observing an anole and you might see it dewlapping, doing push-ups, tail wagging, and fighting with other males or even other anoles species.  James Stroud, a Ph.D. candidate from the Feeley lab @ Florida International University, presented on Saturday about the exploratory results of a new research method he and Robert Heathcote have started to construct social networks of A. sagrei and A. cristatellus in Miami, Florida. A. sagrei and A. cristatellus are similar in morphology and ecology and they wanted to learn how patterns of social interactions between these two species allow them to coexist outside of their native range.IMG_20160709_152928392

IMG_20160709_153811103 IMG_20160709_153904300

Individual social behavior manifests itself collectively at the population level and interactions between populations (within and between species) might act as a basis for evolutionary processes. James and Robert tagged both male and female anoles in their study to track and recapture the animals in the future for a long term study. They measured the distance between every two anoles observed and inferred the strength of interaction as stronger if the anoles were closer to each other. Both species show a great web of interactions both within and between species. Some individuals are also much more “bold,” interacting with many males and females of either species, while others show fewer social interactions. These preliminary data are exciting since so little is known about Anolis social behavior. James also mentioned that they will be including additional data such as the types of interactions that will add great complexity and insight to this story.

IMG_20160709_154158042

 

 

JMIH 2016: Anolis conspersus Color variation and Habitat Use

Bright and early this morning, Christopher Peterson kicked off the anole talks of the day on the topic “Intraspecific color and habitat use variation in Anolis conspersus.” Christopher noted that on Grand Cayman there appear to be three color morphs for A. conspersus: brown, blue, and green and asked if color morph was correlated with habitat use. Christopher captured 309 lizards across the island, photographed them for color analysis, and took a large number of habitat measurements plus basic morphology of the lizards (mass, SVL). When analyzing the color data, however, he noticed that the picture was not so clear: many of the lizards had both blue and green coloration. Since these were not discrete groups, instead he analyzed body pattern, which appeared to be more discrete and showed the same geographical variation. In general, lizards on the East of the island were brown and spotted while the lizards on the West of the island were green/blue with vermiculated pattern.

2016-07-10 08.34.27

Using a complex logistic regression, Christopher analyzed the discretized character state with his habitat and morphological measurements. Disappointingly, he found no associations between morphology or habitat use with body patterns. He concluded that the variation in pattern and coloration is probably best explained by geographic location alone and that future genetic analyses may help clear up if this is a geographical cline with isolation by distance.

2016-07-10 08.37.45

JMIH 2016: Malarial Infection Rates Greater in Anolis carolinensis than Anolis sagrei in Central Florida

Cells infected with P. floridense (left and right) vs. healthy cells (middle)

Cells infected with P. floridense (left and right) vs. healthy cells (middle)

Brian Devlin, a graduate student from University of Central Florida, presented a poster on differential rates of malarial infection by Plasmodium floridense between two Anolis species in Central Florida. While both species exist in the area, A. sagrei is the more recent invader. Brian hypothesized that the infection rate would be higher in A. sagrei because A. carolinensis has coexisted with the parasite longer and might have developed some resistance to it.

Brian collected blood samples from both species and examined the cells under the microscopes to look for signs of malarial infection.  He actually found that the infection rates of P. floridense were significantly greater in A. carolinensis. Infection rate also did not correlate with SVL, sex, presence of tail autonomy, date or locality of the lizard. However, there is a higher rate of infection in the warmer months (May-July) possibly due to the in increase rainfall resulting greater mosquito presence. From these results, Brian hypothesized that the lower malarial infection rates in A. sagrei might have helped the species to outcompete A. carolinensis and successfully establish in Florida.

Brian's poster

Brian’s poster

 

JMIH 2016: Herp League Graduate Student Award Winner: Urban Habitat Partitioning by Two Common Species of Puerto Rican Anolis

Kristin Winchell, my fellow lab mate at the Revell lab, presented her work on the habitat use of two urban dwellers in Puerto Rico. Past studies have shown that Anolis cristatellus and Anolis stratulus vary in abundances and use different portions of the natural habitat. As early as 1964, Rand showed that A. stratulus was less abundant and perched higher on trees in forest habitat. Picture1However, we know very little about whether these patterns are maintained in urban areas where species have access to novel manmade structures. To address this, Kristin evaluated the habitat use of these two species across seven urban replicates and contrasted it to the available habitat. She found that urban A. stratulus uses more isolated perches with greater vegetative canopy and perches at higher portions of the habitat. Anolis cristatellus uses perches that are less isolated, shaded mostly by manmade canopy (i.e. buildings and houses) and at lower heights. When examining these patterns in a multidimensional space, she showed that A. cristatellus has expanded its urban niche through the use of manmade structures, while A. stratulus uses a subset of the natural portion of the habitat that A. cristatellus also uses.

Screen Shot 2016-07-08 at 1.14.23 PM

Her research shows that these two urban dwellers interact with the novel portions of the habitat differently. Anolis cristellus has expanded its niche towards manmade structures which has implications for adaptation to enhance stability and locomotion when using these structures as shown in some of her previous work (Winchell, et al, 2016).  Anolis stratulus uses the less available remnants of the natural habitat which may have implication for conservation if they become sparser as urbanization expands.

JMIH 2016: Comparative Phylogeography of Three Widespread Anolis species across the Puerto Rico Bank

Alexandra Herrera presented on using genetic population structure to understand how geographical processes have shaped genetic isolation of three widespread Anolis species on the Puerto Rican Bank. Geographical processes are an important event in shaping current populations and can lead to interesting patterns of diversification. However, these processes may not necessarily affect species similarly. In this study, Alexandra used a combination of nuclear genes and one mitochondrial gene to examine the population structure of these three anoles.

Evidence strongly suggests that populations of Anolis pulchellus were separated into two major clades through the formation of mountains. These two clades are made up of one cluster from south Puerto Rico and a cluster that includes both Northeast Puerto Rico and the Virgin Islands.

20160708_144935The diversification of the other two species corresponds with tectonic and sea level changes. For Anolis stratulus, divergence between populations in PR, Culebra, Vieques and the Virgins Islands occurred at the end of the Pliocene after the formation of the Virgin Passage.  These populations formed five clusters east PR, south PR, Virgin Islands, Vieques-Culebra and Peter-Norman islands.

20160708_145223For Anolis cristatellus the divergence between east PR and south PR with the Virgin Islands was estimated around the late Miocene-Pliocene transition when the Mona and Virgin Island passages formed. These populations formed 4 clusters east PR, south PR,  Virgin Islands and Carrot Rock-Peter-Culebra-Piñeiro.

20160708_145426This research shows that each species had a different diversification pattern and that they all occurred around the middle of late Pleistocene. Furthermore, geographical processes may affect species differently, leading to various patterns of population structures.

 

 

JMIH 2016: Phylogeography and Population structure of Anolis cristatellus

Quynh Quach presenting her Master's thesis work at JMIH.

Quynh Quach presenting her Master’s thesis work at JMIH.

Quynh Quach, a master’s student from the Revell Lab at U. Mass. Boston, presented her thesis research on “Phylogeography and Population Structure of Anolis cristatellus on the island of Vieques.” Before Quynh joined the Revell lab, former  post-doc Graham Reynolds and former Losos lab undergraduate Tanner Strickland looked at the phylogeography of Anolis cristatellus across Puerto Rico and the Virgin Islands using mitochondrial DNA (in review). Tanner’s work revealed that there was a mitochondrial break on the island of Vieques, just off the coast of Puerto Rico. The mitochondrial data suggested that there were two genetically different groups of A. cristatellus, one on the East and one on the West of Vieques. The only problem was, as we know, mtDNA patterns are not always supported by nuclear whole-genome DNA patterns. In addition, Tanner’s dataset only consisted of 9 samples from Vieques.

When Quynh joined the lab, she wanted to know more about this pattern. Would this division be supported by nuclear genome analyses? Were these lineages anthropogenically introduced? If not, what was the origin of these groups – historical allopatry followed by secondary contact or isolation by distance? So she set out to answer these questions by collecting 300 tail tips from across the island of Vieques, extracting and sequencing both mtDNA and nuclear DNA.

The mtDNA variation shows a strong geographic pattern.

The mtDNA variation shows a strong geographic pattern.

Quynh first constructed a mitochondrial phylogeny to verify the pattern observed by Tanner and Graham. The mtDNA analysis confirmed that there are 2 mtDNA clades on Vieques with strong geographic patterns. The island-wide pattern of mtDNA variation was not what we would expect if anthropogenic introduction were the cause since this would be unlikely to show such a clear East-West pattern with the small contact zone in the middle. So then how did this pattern arise?

2016-07-08 13.39.15

Analysis with K=2 shows two clear groups associated with the East and West.

To answer that question, Quynh next looked at nuclear DNA using RADseq. She sequenced 48 individuals: 5 from Virgin Islands, 6 from Puerto Rico, and 37 from Vieques, then de novo assembled the genome and called 16,808 SNP’s. She ran STRUCTURE and DAPC analyses on this data and found that the Virgin Island samples form 1 cluster and Puerto Rico and Vieques form a second cluster with 4.1% divergence between the groups. But she wondered, what if we look at just Vieques and specify K=2? When she did this with DAPC and saw a clear geographic pattern similar to what she found with the mtDNA. Finally, she tested whether this represented isolation by distance. She found that there was significantly reduced gene flow between geographically distant individuals, supporting this hypothesis as the most likely cause of the variation.

Lastly, Quynh emphasized that it is important to consider multiple genetic markers and not just rely on mtDNA results. Had the group stopped at their original mitochondrial analysis, they would have reached a very different conclusion.

JMIH 2016: The Effect of Incubation Moisture on Desiccation Rate

Corey Cates, a PhD student in the Warner Lab presented his latest
results on desiccation tolerance in Anolis sagrei. Desiccation tolerance
is resistance to water loss and is crucial for lizards especially in dry
habitats. Lizards have parchment-shell eggs that take up water from
the environment during incubation. Corey used two incubation conditions to
test whether desiccation tolerance changes throughout the lifetime of
a lizard and whether incubation moisture has an effect on desiccation
tolerance. His study site consists of four islands within the Tomoka River
in Tomoka State Park, Florida. Two of them
have little vegetation, arid climate and lizards lay their eggs in
dry substrate that consists of shells and rocks. The other two islands
have more vegetation cover, cooler climate and moist dark soil to
incubate the eggs. Corey collected individuals from all
islands and incubated their eggs under dry and wet conditions. He
found that desiccation tolerance is highly plastic: hatchlings that
were incubated under dry conditions show low desiccation rates,

matching rates for naturally incubated individuals.

Experimentally incubated individuals match desiccation rates of individuals sampled in the field

Experimentally incubated individuals match desiccation rates of individuals sampled in the field

He also found that desiccation rates decrease within the lifetime of an individual.

Desiccation rates decrease after releasing hatchlings on experimental islands

Desiccation rates decreased after hatchlings were released on experimental islands

He then released the hatchlings to measure survival. He found that desiccation rates are adaptive: individuals incubated under humid conditions had higher survival on mesic islands, and dry incubated individuals had higher survival on arid islands. Future research will focus on exploring the physiological mechanisms that lead to differences in desiccation tolerance, such as scale number and scale size. He will be continuing complementary research during his dissertation work to further explore the effects of incubation moisture on lizard phenotypes.

JMIH 2016: Evolution Isn’t Slow–Experimental Studies of Eco-Evolutionary Dynamics

For many years, biologists believed that evolution was a process that played out over vast stretches of geological time and would not be observable during field studies. More recent research, however, has begun to show that evolution can occur very quickly and that experiments in the field can address evolution in action. Tom Schoener, eminent professor at the University of California, Davis, shed light on our evolving view of how evolution occurs in his talk, “Eco-evolutionary Aspects of the Lizard Anolis sagrei in an Island Metapopulation” at JMIH 2016.

By introducing a novel predator, the curly-tailed lizard (Leiocephalus carinatus), which devours anoles, to a series of small islands in the Bahamas, Schoener and colleagues were able to observe evolutionary responses in A. sagrei in fewer than 10 years. By preying on A. sagrei, curly-tailed lizards induced behavioral changes in perch height, and created selection for relatively longer limbs that increase anoles’ ability to escape this predator. Curly-tailed lizards also caused a variety of ecological effects, including reducing anole populations and changing arthropod abundance, which may affect the future evolution of anoles on these islands. Ongoing monitoring shows that these anole populations seem to be rebounding and that different types of selection may be acting on hindlimb length.

A curly-tailed lizard (Leiocephalus carinatus) displays its namesake in Florida. Photo: Ianaré Sévi.

A curly-tailed lizard (Leiocephalus carinatus) displays its namesake in Florida. Photo by Ianaré Sévi.

Perhaps not surprisingly, many of the experimental islands were occasionally devastated by hurricanes which are becoming more frequent and more powerful in the Caribbean. While these extreme weather events interrupted some of Schoener’s planned research, they also provided a unique opportunity to study how hurricanes may cause natural selection. Schoener found that anoles which survived hurricanes had longer hindlimbs, and these lizards were better able to hold onto trees and other perches at high wind speeds, likely increasing survival of hurricanes by preventing lizards being blown out to sea! Taken together this body of research suggests that novel environmental changes, such as invasive species or increasingly extreme weather, exert selection on organisms and that we can observe these organisms evolving rapidly on ecological timescales.

JMIH 2016: Late-season Lizards Hatch More Quickly and Run Faster

Previous research in the Warner lab has shown that temperature during egg development influences fitness and performance in Anolis sagrei. In particular, a warmer incubation temperature increases sprint speed. The breeding season of A. sagrei spans from March through October, with lower temperatures early in the season and higher temperatures late in the season. Phil Pearson, a masters student in the Warner Lab, conducted an experiment to test whether embryos are developmentally adapted to their incubation temperature. He collected eggs from two temporally-separated cohorts and incubated them under two different temperatures, simulating seasonal temperature differences. He found that late season hatchlings had higher egg survival when incubated under late season temperature. Regardless of incubation temperature, late season embryos had higher sprint speed, larger body size and longer tails. This might compensate for the late start, since they are competing with early cohort individuals in the population.

Late season hatchlings have higher sprint speed regardless of incubation temperature

Late season hatchlings have higher sprint speed regardless of incubation temperature

Overall, this suggests that timing of oviposition has greater effect on morphology and performance than incubation temperature. Future analysis will show whether timing of oviposition affects survival. Phil released the hatchlings on small islands to measure fitness using a mark-recapture approach and will hopefully present his findings at future meetings.

 

Page 100 of 298

Powered by WordPress & Theme by Anders Norén