Category: Research Methods Page 1 of 9

How Do Anole Species Tell Each Other Apart?

When it comes to finding a mate or defending a territory, animals need to recognise members of their own species. The reasons are intuitive: you only want to mate with your own species to ensure viable offspring, and you should only invest the effort in being territorial when confronted by rivals from your own species. There are exceptions and these are interesting—hybridization or territorial competition between species—but generally animals need a system for species recognition.

The large, often spectacularly coloured throat fan or dewlap of anoles seems like an obvious way to evaluate species identity. Taxonomists have historically thought so, too. Each species appears to display a dewlap that’s unique in colour and pattern. But there are various Anole Annals posts highlighting this is not always the case. Instead, the colour of the dewlap is often an adaptation to the light environment for enhancing the detection of territorial displays.

So what about those territorial displays? Might anoles use the complex movements of the head-bob and push-up display to figure out species identity?

Classic work by Charles Carpenter and Tom Jenssen revealed how often the head-bob movements of lizards, and anoles in particular, seemed specific to each species. Pioneering experiments using video playback by Joe Macedonia in the ’90s has also provided evidence that anoles are able to distinguish displaying rivals of their own species from those of other species. But what is it about the pattern of movements used in the head-bob and push-up display, or even how the dewlap is extended and retracted, that conveys species identity? Is there one feature that varies the most among species that anoles commonly rely on to identify species?


Display-Action-Pattern graphs (above) showing the complexity of movements used by Puerto Rican anoles for territorial advertisement displays

These are hard questions to answer. Anole displays are complex, using many different types of movements, so there’s a huge number of possibilities. One approach would be to isolate and manipulate each type of movement and use video or robot playbacks to ask the anoles themselves. But doing that would take an entire career. There are a seemingly infinite number of combinations to consider. In fact, it would be impossible without a way to narrow things down.

Claire Nelson is a creative (and courageous!) graduate student who had an eye for solving the challenge. She figured it was possible to leverage the large archive of footage I’d accumulated over many, many years. These videos were of free-living male lizards performing territorial advertisement displays. Her idea was to develop an objective method for identifying which movements used in the head-bob, push-up or dewlap display had the potential to convey species identity. She’s just published her solution in Animal Behaviour.


Claire (above) doing a balancing act with some non-anoles

Claire used this archive of display videos to create Display-Action-Pattern graphs, a method developed by Carpenter back in the 60s. These track the up-and-down movement of head-bobs and push-ups as well as the extensions and retractions of the dewlap during the territorial display. To keep it manageable, she limited her efforts to anole species on Puerto Rico, and graphs of about 10 territorial advertisement displays per male. But there was an important biological reason for selecting this number of displays as well. It effectively mimicked the number of displays an anole might typically see on first encountering another lizard. That is, anoles likely make judgements on species identity from only a handful of displays.

From these Display-Action-Pattern graphs, Claire took a host of measures, ranging from the duration and number of movements used, to variation in amplitude and pauses between movements. She also noticed that anoles tend to perform certain combinations of movements together in what she came to call ‘motifs.’ After many many hours of effort, Claire accumulated a huge amount of data for nearly 20 different types of display movement for eight Puerto Rican Anolis species, and in many cases, for different populations of the same species.

Claire asked me for advice on how to analyse it all. I have to admit I was completely useless on this front. I muddled something about using coefficients of variation and some other nonsense, but really I had no idea. I was still in shock over how much data she had accumulated, and the novelty (and implications) of discovering motifs in the displays. She knew what she was doing, though. Her analytical solution was vastly superior to anything I could have suggested.

Claire investigated a variety of approaches, but in the end she settled on the method of random forest tree classification. It’s a sophisticated machine learning algorithm that, in a nutshell, takes data and groups like with like. It doesn’t require any prior direction or preconceived notion on how data should be grouped. It just uses the variation in the data itself. You could view the algorithm as an anole brain using basic rules of variation to make judgements on which displays are likely to be different and which displays are likely to be the same.

The outcome was impressive. The algorithm correctly assigned the vast majority of lizards to their correct species based on just a handful of displays. Where errors occurred, it was partly because lizards were assigned to the right species, but the wrong population. This means anoles from different populations tend to share some display features because they’re still from the same species. Yet the algorithm was able to correctly assign most lizards to the right population. In other words, there was still enough variation in the displays between populations of the same species to identify them as belonging to separate populations. This is very interesting!

Random forest tree classification (above) can assign over two thirds of displaying lizards to their correct species.

The evolution of new species begins with individuals of the same species starting to segregate from each other in some way. Often it’s physical separation (on opposite sides of a mountain range), but changes in social signals can also prompt behavioral separation as well. This could be the case for some anoles on Puerto Rico. Once individuals stop recognising each other as the same species, they no longer reproduce with one another, and the door to speciation is propped open.

The other discovery Claire made was the apparent lack of any common display feature that could be used to identify species (and population identity). Instead, different features were important for different species. The duration and number of headbob movements were features that could be used to identify the territorial displays of Anolis poncensis—a species that is striking in its use of lots of extremely rapid, up and down body movements—whereas the way the dewlap was extended was influential in identifying different populations of Anolis gundlachi—a species that has an unusually long dewlap display. Other species like Anolis pulchellus and Anolis krugi were best identified by effectively considering features of the entire territorial display.

Whether or not anoles actually use the features identified by the algorithm in species recognition remains an open question. But Claire has managed to identify the potential candidate cues that could be used. It is now possible to develop a focussed research program to test whether, and how, anoles used these features to identify species. Again, the obvious way to do this would be to ask the lizards themselves using robot playbacks.

Random forest tree classification sounds awfully complicated, and it is very sophisticated, but it’s actually easy to implement. Any dummy can do it. I taught myself how and wrote a step-by-step tutorial so you can as well. We’ve published this tutorial alongside Claire’s paper in Animal Behaviour. Give it a whirl!

Shape Variation of the Pectoral Girdle of Anolis Ecomorphs

The first three paragraphs of Jane Peterson’s contribution to the Second Anolis Newsletter.

Jane Peterson’s contribution to The Second Anolis Newsletter remains one of the most comprehensive exemplars of functional-morphological research of the anoline appendicular girdles. In just a few short paragraphs Peterson (1974) outlined the key differences in pectoral girdle morphology between the Anolis ecomorphs, drawing information from both field observations and anatomical dissections of anoles from all four Greater Antillean islands. The outlined study could have formed a major contribution to our understanding of ecomorphology, had these brief observations ever been expanded into a scientific publication. Sadly, they remained as notes, confined to a brief communique on an informal basis (that continues to be formally cited). Several intriguing studies hence have examined anole appendicular morphology, but rarely allowed for implications that reach across multiple island radiations (e.g. Anzai et al. 2014, Herrel et al. 2018).

With my 2016 Ph.D. thesis, I set out to quantify what Jane Peterson had observed forty years prior, and must confess that I still fall short of reproducing the multitude of implications that Peterson’s (1974) brief descriptions alluded to. Instead of combining video-recorded movement cycles with morphological descriptions, my comparisons are solely based on three-dimensional shape analysis of the skeletal elements that comprise the breast-shoulder apparatus (BSA): the clavicle, interclavicle, presternum, and scapulocoracoid (Fig. 1). Employing the power of computed tomography scanning, and geometric morphometric analysis, I quantified the shapes of the central elements of the pectoral girdle, and compared these across anole radiations.

As with earlier work, I focused on the Jamaican ecomorph representatives, and sought out their ecomorph counterparts from Hispaniola and Puerto Rico, particularly targeting those species that are the most and least similar to the Jamaican forms. That last line of thought did not reveal any straightforward answers, as the complex structural shape of the BSA allows these anoles to be relatively distinct in some aspects, while being quite similar in others. For example, the general shape of the presternum and interclavicle are quite similar between the two trunk-ground anoles Anolis lineatopus (Jamaica) and A. gundlachi (Puerto Rico), while that of the scapulocoracoid differs quite remarkably between the two. These complex associations will take a more detailed analysis than what is warranted here, so I’ll focus on the bigger picture instead.

Fig. 1: BSA of Anolis baleatus

Fig. 1: CT-rendition of the skeletal components of the breast-shoulder apparatus of Anolis baleatus in lateromedial view, depicting all anatomical features described in the text. The gray arrow denotes anterior.

Skeletal elements of the BSA in isolation

Previous analysis of the scapulocoracoid in isolation revealed that its shape differs between Anolis habitat specialists, and resembles a particularly dorsoventrally tall shape in twig anoles (Tinius et al. 2020). The other ecomorph groups (trunk-ground, trunk-crown, and crown-giant) show obvious tendencies towards a particular structural organization, but in none of these does the scapulocoracoid resemble a truly characteristic shape.

Robot Lizard Army versus Deadly Predators

Over the years, there has been a lot of discussion on Anole Annals about the large, conspicuous dewlap. And rightly so because it is arguably the most evocative feature of the anoles. Much of this discussion has focussed on its function, such as its role in species recognition, mate choice, and territorial communication. But is there a cost to having such an audacious visual signal?

We needn’t isolate this question to just Anolis lizards. All socially communicating animals need to produce a signal that will be obvious to conspecifics. There’s little point producing a mating or aggressive signal if females or rivals never detect it. But there is a cost to being conspicuous and it can be a matter of life and death: the unintended attraction of predators.

Generally, the assumption has been that animals just incur the potential risk of predation for the sake of successful communication. But just how risky is it? The dewlap is often large and brightly coloured, but when it’s not being used in display, you’d never know anoles even had one.

There are also at least two other independent origins of the dewlap, including in the gliding lizards of Southeast Asia, the Draco. In these lizards, the dewlap is again large and often conspicuously coloured.

For both Anolis and Draco, one of the best ways to find lizards in the wild is by the quick flash of colour as males rapidly extend and retract the dewlap during their territorial displays. In fact, it is often the only way to find Draco, which are camouflaged and extremely difficult to spot, even when you happen to be staring right at them.

I had this crazy idea a few of years ago… Would it be possible to build an army of robotic Draco lizards with plasticine bodies that could retain impressions of predator attacks and measure the risk of predation from performing a conspicuous dewlap display?

It really was a ridiculous thought, but my long-time collaborator Indraneil Das was game.

And it worked, with the results just published.


Robotic lizards compared to the real thing in (a) morphology and (b) behaviour (robots were modelled on Draco sumatranus from Borneo).

It was an awful experiment to do. Building the robot army turned out to be the easy bit. To be clear, it took months of development and manufacture, all of which I did in my garage (long story). It then took years to run the experiment, with multiple replications across two continents because the data was puzzling. There were bushfires, floods, battles with swarming wasps and kamikaze leafcutter ants, chipped teeth, falls from ladders, bogged car rentals, hammered thumbs, and in the end I only just managed to get it finished before the world turned side-ways in 2020.


Left: fresh-faced and optimistic in June 2018; Right: brave-faced but really a little shellshocked with the retrieval of robot 2,120 in February 2020 (NB: batteries have a habit of failing and parts started to corrode so only 1,566 robots were fully functional in the experiment).

It turns out that prey that can produce a signal intermittently — effectively turning their conspicuous display on and off at strategic moments, like the dewlap — can drastically reduce their risk of predation. In fact, attack rates by predators on dewlapping robotic lizards were no different to robots that remained unmoving and cryptic in the environment. Which means there doesn’t really seem to be a large cost from increased predation for animals that perform bouts of conspicuous behaviour.

But this wasn’t the biggest surprise.

The experiment included robotic lizards that kept the large, conspicuously coloured dewlap permanently extended so it was always visible. Think of peacocks with their massive tail trains or other animals that are spectacularly ornamented. These features are always visible and are not signals that can be turned on and off. My assumption was that these robotic lizards would be the hardest hit by predators.

This wasn’t the case at all. Predators actually avoided these robotic prey and to such an extent that the probability of attack was lower than the robotic lizards that remained cryptic and didn’t perform any conspicuous behaviour.


Photo montage of predator attacks left in the plasticine body of the robotic lizards

At first, I found this to be confusing and replicated the experiment over and over again. I even called in my partner Katrina Blazek who is a biostatistician to blind the data and independently perform the analyses (Katrina is also a skilled tailor and made all the robot dewlaps). I also dragged in my colleague Tom White who is an expert on animal colour discrimination to confirm that the dewlap really was as conspicuous to predators as I thought it was.

The data was robust.

This type of predator phobia actually helps explain the evolution of a completely different type of animal signal in nature: aposematic signals or warning signals that some prey evolve to explicitly advertise their location to predators to warn them against attack, usually because they’re toxic. Conspicuous poison dart frogs are an obvious example, so are ladybirds (or ladybugs).

The paradox is how these warning signals could evolve in the first place given the first individuals that tried to advertise their warning would be quickly eaten by predators that had no idea the signal was meant to advertise unprofitably until after the attack.

One of the key hypotheses that has been proposed to resolve this evolutionary paradox is that predators are highly conservative in the types of prey they go for. That is, they tend to avoid prey that look unusual in some way, even if those prey are more easily detected.

This is exactly what happened in this experiment. The robotic lizard with the permanently extended dewlap was ‘weird’ and so predators instead targeted the robotic lizards that either displayed intermittently or remained cryptic, both of which were more typical of their familiar prey.

The take home message is:

Follow your ridiculous idea and call on your friends to help.

(But don’t hold metal tools between your teeth. Your dentist will be very annoyed with you.)

Seeking Support for New Research Investigating Color Change in Green Anoles

Victoria Pagano’s page from the crowd-funding platform Experiment

Green anoles (Anolis carolinensis) are talked about quite frequently here on Anole Annals, with 11 articles being published in 2018 and 2019 combined! As I am sure many of you are aware, green anoles change color from green to brown, and while it is known how, it is not yet known why. Although there have been multiple field studies into what causes green anoles to change color, the data have been inconclusive. This is why an experimental study is necessary to try to determine the cause of the color change.

In this experimental study, there will be two main hypotheses tested:

The first is the well known thermoregulation hypothesis. I will be testing this by establishing separate light and heat sources, and turning them on and off for different scenarios. If anoles change color for thermoregulation, then they would turn brown more frequently when the heat is off and the light is on.

The second hypothesis is the effect of increased stress. Stress will be induced by sliding a red disk towards the anoles multiple times at a high speed. Any color change that occurs within the red disk moving and the following 10 minutes will be documented as stress-induced.

I will not be able to test the advertisement signaling hypothesis due to feasibility. Because funding and space is limited, I do not have the capacity to house male anoles, as each one needs his own setup. Therefore, testing only females is the only feasible option, and by doing so, the advertisement signaling hypothesis will not be able to be tested, as this hypothesis pertains mainly to males.

To raise funding for this project, I am using an all or nothing crowdfunding platform called Experiment. As fellow anole lovers, I hope that you can help support my scientific endeavors by visiting my project page. All forms of support are greatly appreciated, from donations, to telling your friends about the project, or even by just reading my project page and commenting your thoughts! Whatever the contribution, I am very grateful, and am simply excited to be able to share what I am doing with all of you!

If you wish to learn more about this project, you can visit the project page, “What drives the color change in green anoles?”, where I have posted my methodology, protocols, and will be posting continuous updates on the progression of the project. If you become a contributor, you will have exclusive access to more updates, and will be able to learn more about the research.

My project page stops accepting donations on November 1st at 12:00 AM PT, so be sure to make your way over to the page by then to give your support!

Thank you for taking the time to read this article. I hope that you will explore the project page, and help support this cool and unique research!

A Survey on Surveying Reptiles

Simon Harris, a research student at the University of Gloucestershire, is seeking herpetologists to participate in a survey on the use of artificial hiding places (“refugia”).

What he has in mind is the placement of artificial cover on the ground, under which reptiles might seek refuge. I’ve participated in such a study myself, using large plywood boards to sample Butler’s garter snakes (Thamnophis butleri) around Milwaukee, Wisconsin.

The method doesn’t seem that propitious for anoles. I can imagine artificial cover on walls or trees being a good technique for geckos– I’ve often surveyed house geckos using existing artificial objects (tapestries, paintings, etc.), but anoles, which were present at all sites surveyed, rarely turned up in a gecko survey.  If anyone has ever used such a technique, or a similar one, for anoles, please tell us in the comments, and let us know how it worked. And, since many anologists have broader herpetological experience, if applicable, please fill out Simon’s survey!

Evolution 2018: Dominica Anoles Change Up Their Displays when Faced with New Competition

Claire Dufour, Postdoctoral Fellow at Harvard University, presents her research at the 2018 Joint Congress on Evolutionary Biology in Montpellier, France.

In another excellent study exploring the effects of anthropogenic activity on evolution in anoles, Postdoctoral Fellow Claire Dufour is investigating how the recent introduction of Anolis cristatellus from Puerto Rico to the island of Dominica may be driving changes in the display behavior of Anolis oculatus, a Dominica native. Specifically, Dufour is asking whether interactions between the A. cristatellus and A. oculatus are consistent with patterns of Agonistic Character Displacement, in which interference competition between the newly sympatric species results in shifts in traits affecting the rate, intensity, and outcome of interspecific aggression.

To begin, Dufour and colleagues constructed a pair of robots that mimicked the typical look and display behavior of a male A. oculatus and A. cristatellus. She then traveled across Dominica and presented over 130 wild male A. oculatus with one of the two robots, and recorded the display behavior exhibited in response. Beyond measuring the duration of the response display, Dufour also tracked the proportion of time spent by the A. oculatus engaging in any of nine specific display behaviors, such as dewlap extensions, push ups, nuchal crest presentations, and others. By repeating this experiment among populations of A. oculatus existing sympatrically with A. cristatellus, as well as populations not yet invaded by A. cristatellus, Dufour was then able to ask whether variation in display time or composition among the native anoles could be attributed to the presence of A. cristatellus. Indeed, this turned out to be the case.

Anolis oculatus living in allopatry from the introduced A. cristatellus were found to engage in longer display bouts when presented with the conspecific robot, and shorter display bouts when presented with the unfamiliar A. cristatellus robot. Alternatively, A. oculatus occupying habitats already intruded by the A. cristatellus increased the duration of time spent displaying, regardless of which robot was presented. In addition, A. oculatus were also found to alter the behavioral composition of their displays when occupying habitats shared by the introduced A. cristatellus.

Dufour and colleagues capitalized on a rare opportunity to document the very early stages of a species invasion, and in turn improve our understanding of how human-mediated species introductions can promote evolutionary change. As changes in behavior are often the first response to novel competition, these results are consistent with the criteria of Agonistic Character Displacement, and support the claim that the introduction of crested anoles in Dominica has indeed driven a shift in the behavior of native anole communities. While the consequences of these shifts on the outcome of interspecific competition are still unclear, it will be interesting to see how differences in display behavior develop over time, and further, whether these initial changes in display behavior could lead to additional shifts in behavior or morphology among these newly interacting species.

Evolution 2018: Speed Is Key for Anoles in the City

Dr. Kristin Winchell at the 2018 Joint Congress on Evolutionary Biology

Human activity is well recognized as having evolutionary consequences, and studies on the prolific Anolis genus continue to show us just how adaptable these lizards can be. Dr. Kristin Winchell, a Postdoctoral Research Associate at Washington University in St. Louis, MO, is investigating the relationship between human activity and evolution in Puerto Rican crested anoles, with a current focus on how selection across urban habitats might be driving changes in morphology and behavior among the lizards.

In an elegantly designed study, Winchell and colleagues collected over 120 male crested anoles (Anolis cristatellus) from forests and urban areas across the island. The team then assessed the ability of these anoles to perform a series of tasks representing normal daily activities, such as sprinting and clinging. By comparing anole performance on natural substrates like wood to their performance on more urban substrates such as concrete and metal, the team determined that the lizards consistently performed better on natural substrates, yet decreased their velocity when perches were inclined. Specifically, the crested anoles sprinted at less then half of their maximum speed on painted concrete, up to 32% slower on metal compared to wood bark tracks, and as much as 34% slower when surfaces were steeply inclined.

Winchell and colleagues measured differences in limb length and toe pad morphology among urban-caught and forest-caught anoles.

In addition to performance assessments, detailed scans of toe pad and skeletal morphology were collected and analyzed, allowing Winchell to identify differences in morphological traits underlying any variation in performance. Upon comparison, the pattern was clear: lizards living in cities had significantly longer limbs, more lamellae on their front toe pads, and larger overall rear toe pads. Longer hindlimbs in particular were found to positively influence velocity across substrate types, surely a selective advantage for anoles tasked with sprinting between the amply spaced urban perches. However, the urban phenotype is not without cost, as longer forelimbs were found to negatively influence velocity on more steeply inclined surfaces, as well as increasing the lizard’s likelihood of slipping. As all urban populations measured shared these phenotypic traits, however, the advantage of increased speed seems to be worth the costs.

As rates of urbanization continue to increase, further studies examining the response of taxa adapting to urban environments will be imperative. With Winchell’s plan to explore performance and morphological differences in other anole species living across the urban-forest continuum, it will be exciting to learn how these traits are affected within species originating from other territorial and arboreal microhabitats.

ESA 2018: The Consequences of Malarial Infection on the Puerto Rican Yellow-Chinned Anole in Post-Hurricane Conditions

Reduced host fitness and impaired immune functions are some of the most well-known consequences of parasitic infections. However, some parasites play important ecological roles by influencing their host’s populations and community composition. In eastern Caribbean islands, the malaria parasite Plasmodium azurophilum has been suggested to mediate competition and determine distribution patterns on some anole species. In Puerto Rico, P. azurophilum is known to infect at least five Anolis species – its main host being the yellow-chinned anole (Anolis gundlachi).

David Clark, a master’s student at the University of Puerto Rico – Río Piedras Campus, along with his research mentor (Dr. Miguel A. Acevedo), assessed the negative ecological consequences of P. azurophilum infection on A. gundlachi within the Luquillo Experimental Forest in eastern Puerto Rico. They quantified this by measuring body condition, dewlap size and site fidelity, all of which were exclusively measured in male anoles, as these are the most often infected by P. azurophilum. Moreover, to determine if infected individuals perform worse after a major disturbance event, the body condition was measured again after Hurricane Maria. They used the residual index for body condition, which is calculated using the regression of the log weight and log size. Dewlap size was measured by taking photos of anoles with their dewlaps extended and calculating the area in ImageJ. To diagnose the presence of P. azurophilum infection, blood samples were collected and then examined using a light microscope under oil immersion. Finally, to examine movement patterns and quantify the site fidelity of male individuals, they conducted a mark-resight study within the forest. For statistical analysis they performed linear regression for body condition and dewlap area, and log-linear regression for distance moved.

Tagged male Anolis gundlachi (a) and Plasmodium under oil immersion (b, c & d) (Image by David Clark)

David and Miguel found that P. azurophilum infection did not influence the site fidelity of A. gundlachi males, and that infected individuals tend to exhibit slightly larger dewlaps. The presence of this malaria parasite did not seem to negatively influence body condition before Hurricane Maria. However, their results show that after this major disturbance, body condition was better for infected anoles, suggesting that these individuals are more tolerant to disturbance conditions than the uninfected ones. All in all, no evidence was found to suggest that P. azurophilum infection has negative consequences on the ecological factors assessed here on A. gundlachi. David and his team are currently performing experimental competition trials to assess intraspecific interactions between infected and uninfected yellow-chinned anoles, as well as immunological studies to determine immune responses to infection. Future studies could possibly bring light on the ecological consequences of interspecific interactions between Puerto Rican anoles infected with malaria parasites.

The Luquillo Experimental Forest after Hurricane Maria (Image by Miguel A. Acevedo)

 

 

 

 

 

Perch Use by Anolis polylepis Peters, 1874 (Polychrotidae) in a Tropical Humid Forest at the Piro Biological Station, Costa Rica

Morazán Fernández, F., Gutiérrez Sanabria D. R., Coello-Toro H. L., Arévalo-Huezo, E. Ioli, A. G., Díaz Gutiérrez, N., Guerra, L. F, Burbano, D., Guevara, C., Lobos, L., Rico-Urones, A., Cortés-Suárez, J. E, Jiménez, R., Reinke, H., Narváez, V., Aranda, J.M. 2013. Relación entre la fauna silvestre y las plantaciones de palma africana (elaeis guineensis) y su efecto en la producción de pequeños y medianos productores en la península de osa, Costa Rica. Instituto Internacional de Conservación y Manejo de Vida Silvestre, Universidad Nacional, Costa Rica. Pp 104.

This image was taken as part of the integrated course developed by the XXIII promotion of the Masters in Conservation and Wildlife Management of the National University of Costa Rica.

Individuals of a species use habitats on different ways for refuge, feeding, reproduction, or perching. We studied the variation on perch use between sex and age classes of Anolis polylepis at the Piro Biological Station, Costa Rica. Our results point to a similar perch use pattern between sex, but different between age classes, considering only the lowest and
highest perches. Adult females and males use herbaceous and shrubby vegetation and avoid leaf litter. Juveniles use herbaceous vegetation and leaf litter, but avoid shrubby vegetation. We suggest that adult males use higher perches to defend territory.
Conversely, juveniles use lower perches to avoid predators and foraging. Adult females use middle and high perches. This result is in contrast with previous studies on this species.

Cortés-Suárez, J. E. and N. Díaz-Gutiérrez. 2013. Perch use by Anolis polylepis Peters, 1874 (Polychrotidae) in a tropical humid forest at the Piro Biological Station, Costa Rica. Herpetology Notes 6: 219–222.

JMIH 2018: How Can We Measure Immune Function in Anoles?

Measuring the swelling induced in anole feet during the PHA assay may result in swelling in one’s own fingers.

The immune system is critical to the survival of animals, including anoles, which are faced with an environment full of potential pathogens and toxins. Ecoimmunologists have developed a myriad of assays to measure various aspects of the immune system and its function in a variety of species, but these assays are often applied to organisms without fully validating them. This issue can prevent a full and accurate interpretation of the results obtained. The PHA skin test is widely used in lizards, including anoles, to test immune function, but has exactly this problem: it has only been validated in cane toads and a crocodile…a large oversight!

Caty Tylan, a PhD candidate and DVM at Penn State University in Tracy Langkilde’s lab, set about rectifying this situation by validating the PHA assay in our favorite squamate lab “rat,” the green anole, Anolis carolinensis. To conduct the PHA test, Caty injected two different types of phytohemagglutinin (PHA-L and PHA-P) into the footpads of green anoles and compared the swelling produced to that of control injections. She also measured types of white blood cells in the blood and foot tissue at regular intervals after injections. Caty found that both types of PHA work well and induce similar levels of swelling with a standard assay protocol in green anoles, but that they induce different types of immune responses. PHA-P elicits a broader response with different types of immune function that varies with time after injection, meaning that the outcomes of this test may be harder to interpret. PHA-L on the other hand, induces higher concentrations of T-lymphocytes,  a specific type of white blood cell. As a result, using PHA-L for PHA assays may lead to a test that is more interpretable, especially in studies looking at how the stress response affects immune function.

PHA-L injections result in a clear peak in lymphocytes at the injection site after 24 hrs., an ideal response for a test of immune function.

The research represents the completion of work Caty first presented at SICB 2017 and has now been published!:

Tylan C, Langkilde T. Local and systemic immune responses to different types of phytohemagglutinin in the green anole: Lessons for field ecoimmunologists. J Exp Zool. 2017; 327:322–332.

Page 1 of 9

Powered by WordPress & Theme by Anders Norén