Category: New Research Page 8 of 66

Anoles as Models for Dry Fibrillar Adhesion

This slideshow requires JavaScript.

The adhesive structures of geckos have been the subject of extensive inquiry across a variety of disciplines ever since Autumn et al. (2002) discovered that van der Waals intermolecular forces are the main driver of gecko adhesion. Geckos adhere to surfaces using expanded subdigital scales (scansors/lamellae) that are covered in thousands of beta-keratin fibrils (setae) that branch into hundreds or thousands of triangular-shaped tips (spatulae) that are about 200 nanometers in width (see slideshow for images). Spatulae make intimate contact with a surface resulting in van der Waals intermolecular forces. Gecko adhesive toe pads are multifunctional; they are a reversible dry adhesive, they can adhere to a variety of surfaces, they can adhere underwater in some conditions, they have self-cleaning and self-drying capabilities, and they can adhere in a vacuum (see Autumn et al. 2014 for a recent review of gecko adhesion). A number of gecko-inspired synthetic adhesives have been generated over the years, but have not yet managed to replicate the multifunctionality observed in the natural system (Niewiarowski et al. 2016). There are a number of potential explanations for this, but one could be that most gecko-inspired synthetic adhesives are simplified single fibers that do not fully replicate the multiply branched structure of gecko setae. Anoles, however, have independently evolved adhesive toe pads with fundamentally simpler microstructures compared to their gecko counterparts; anole setae are single fibers with a single, larger spatulate tip and more closely resemble the gecko-inspired synthetic adhesives that are currently capable of being generated (see slideshow for images). Therefore, anoles may be an excellent model fibrillar system to better understand the observed functional discrepancy between synthetic and natural fibrillar adhesives.

In an invited paper recently accepted for publication in Integrative and Comparative Biology, my co-authors and I (see full citation below) briefly reviewed the relevant literature concerning the anole adhesive system, discussed how investigation of this convergently evolved system could impact our general understanding of fibrillar adhesion, and suggested a number of hypotheses and areas of future inquiry that could be tackled in future work.

Anole adhesive toe pads have often been suggested as evolutionary key innovations (Losos 2011), yet they have not been nearly as well studied as gecko adhesive toe pads. Nevertheless, general morphometrics, clinging ability on smooth substrates, and correlations between adhesive toe pad size, clinging ability, and habitat use have been reported for anoles (Losos 2011). Studies, however, reporting Anolis clinging ability on ecologically-relevant surfaces, detailed morphometric data of anoline setae, and the multifunctional properties of anoline adhesive toe pads are limited or nonexistent. Anoles may be excellent models for fibrillar adhesion for four main reasons: (1) anole setae are closer in dimensions and morphology to the currently producible gecko-inspired synthetic adhesives, (2) anole setae are not multiply branched which may reduce the complexity of modeling and/or explaining adhesion especially under non-ideal circumstances, (3) anole setae also more closely resemble the theoretical models previously used to explain gecko adhesion, and (4) the extensive evolutionary and ecological data on anoles may assist in answering persisting questions regarding the adhesion ecology and evolution of adhesive pad-bearing lizards.

Although the gecko adhesive system has been particularly well-studied over the past two decades, many fundamentals of biological fibrillar adhesion still need to be worked out or are otherwise unknown. We believe that parallel investigation of the anoline fibrillar adhesive system may assist in filling these gaps in our knowledge, and thus we encourage an interdisciplinary, communal effort to investigate the adhesive ecology, evolution, morphology, performance, and behavior of anoles.

Full citation

Garner, A.M., M.C. Wilson, A.P. Russell, A. Dhinojwala, and P.H. Niewiarowski. Going Out on a Limb: How Investigation of the Anoline Adhesive System can Enhance our Understanding of Fibrillar Adhesion. Integrative and Comparative Biology. In pressLink to article.

References

Autumn K, Niewiarowski PH, Puthoff JB. 2014. Gecko Adhesion as a Model System for Integrative Biology, Interdisciplinary Science, and Bioinspired Engineering. Annual Review of Ecology, Evolution and Systematics 45(1):445-470.

Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ. 2002. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, USA 99(19):12252-12256.

Losos JB. 2011. Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press.

Niewiarowski PH, Stark AY, Dhinojwala A. 2016. Sticking to the story: outstanding challenges in gecko-inspired adhesives. Journal of Experimental Biology 219(7):912-919.

Color Change In the Andean “Chameleon”

Anoles are well known for the sharp differences in dewlap colour and size between females and males. However, this is not true for all the species of the genus. Anolis heterodermus is a large arboreal lizard that inhabits shrubs and small trees in the cloudy Andean forests in Colombia and northern Ecuador. Although males are slightly bigger than females, this species has no apparent sexual dimorphism in dewlap size or colouration. Anolis heterodermus is a slow-moving lizard that relies mainly on its body colour pattern to camouflage from predators, thus its common name Andean “chameleon.” Moreover, these lizards have a long prehensile tail which is very useful when moving through thin branches. Interestingly, males curl and swing their tail to their opponents during aggressive encounters.

The body colour pattern is incredibly variable in this species, but all animals have a small patch of bluish scales in the base of the tail. After keeping some of these lizards in captivity, I noticed that the colouration and size of this patch changed dramatically between animals, and even within the same animal over the course of the day. Every time I arrived at the lab in the morning, the patch was small and reddish (Fig. 1A) but after midday, it seemed bigger and with an intense blue colouration (Fig. 1B).

Figure 1: Colour and size variation in the tail patch of Anolis heterodermus. The same male has A) a reddish patch at 06:40 h and B) a bluish patch at 14:47 h.

I thought that the colour and/or size of this tail patch were somehow related to a male’s quality and that could be the reason why males display their tail in the combats. If my hypothesis was correct, males (but not females) would have a larger variation in patch colour and size that is dependant on the time of the day. With the help of some colleagues, I collected males and females of A. heterodermus across the Eastern Cordillera of Colombia. I housed the lizards separately and took photographs (Fig. 1) from each animal every hour between 6:30 to 18:00 h. On each photo, I measured the colour and size of the tail patch. Colour was scored as the ratio of blue vs. red intensities (Blue:Red score), where a larger score indicates bluer scales.

I found that the tail patch of Anolis heterodermus changed from red to blue throughout the day and was generally bluer in males. However, contrary to my hypothesis, the colour change was similar between females and males (Fig. 2). In addition, the coloured patch remained the same size throughout the day in both males and females but was bigger in males.

Figure 2. Diurnal colour change in the tail patch of males and females of Anolis heterodermus. Larger values of the Blue:Red score indicate bluer scales.

Active colour change in lizards often occurs in the context of intraspecific communication (e.g. territorial and courtship behaviour). However, my animals were kept isolated from each other; thus is unlikely that the change in colouration per se is conveying social information. Intriguingly, the highest values of blue colouration for both males and females were reached around midday, which corresponds to the natural peak of activity of the species and possibly to higher body temperatures. In this case, the colour change might be an indicator of animal activity or arousal. This could also explain why the blue colouration disappears at night (personal observation).

Finally, the fact that the patch was significantly bigger and bluer in males compared to females supports the hypothesis that the patch can be relevant in male interactions. It would be interesting to test if the colouration and size of the patch are related to male performance or overall quality.

These are just some of the many questions that still need to be answered about the colour change in the Andean “chameleon,” and this study highlights the importance of observations in the laboratory to identify traits that might be important but difficult to observe in nature.

Original article: Iván Beltrán (2019) Diurnal colour change in a sexually dimorphic trait in the Andean lizard Anolis heterodermus (Squamata: Dactyloidae), Journal of Natural History, 53:1-2, 45-55. DOI: 10.1080/00222933.2019.1572245

Why Are Some Brown Anoles Orange? A Laboratory Study

An orange Anolis sagrei used in the study. Image by Beth Reinke.

Readers of Anole Annals know that Florida populations of Anolis sagrei now include red-orange individuals [1, 2, 3]. I learned more about this new color by conducting the first scientific study on orange skin coloration in Anolis sagrei.

Before I go any further, I owe a thank you to those who documented their orange A. sagrei findings on Anole Annals. Previous posts confirmed that what I was seeing in the lab wasn’t an anomaly. As I learned more about the sightings of these orange anoles, it became apparent that the orange phenotype was rather common. The posts also helped me understand when this odd coloration was first noticed (only in the last decade!). I was even able to meet with one contributor in person.

The first thing I noticed was that there is quite a bit of diversity in the distribution of orange coloration on the bodies of the lizards themselves. Most of the posts on Anole Annals showcase full-bodied orange lizards [1, 2, 3]. I found that partial orange coloration was just as common. Take, for example, this male whose orange coloration was limited to his tail and hind legs.

A biologist’s first intuition is to wonder how differences in coloration might influence survival. Most of my research project was focused on identifying fitness differences between brown and orange lizards. I was working under the impression that orange skin suddenly appeared in the population and became common very quickly. I knew that there are cases when new phenotypes become common for no reason (genetic drift). Nonetheless, we don’t normally expect to see a new phenotype become common in a short amount of time. I suspected that orange lizards had an easier time surviving or breeding than the brown ones. But I was surprised that a color as conspicuous as orange could be so successful. I reasoned that it couldn’t have helped them camouflage, so why are orange lizards surviving and reproducing?

Maybe it had something to do with mate choice. Since males use their orange dewlaps to attract females, it might be that a completely orange male would look particularly stunning to a female. Even though orange might have made the males an easier target for predators, the effect on reproductive success may have outweighed the risk of predation. This is the hypothesis that I had in mind for most of the project and the one that made the most sense to me. It’s fitting, then, that when I ran a behavioral experiment in the lab, the females didn’t care at all about color! They were much more interested in males that performed a lot of pushups and head bobs (behaviors that many species of lizards use to communicate). These pushups and head bobs demonstrate a male’s physical fitness to a female.

Maybe orange reflected something in their physiology, then? I ran two different experiments to test endurance and sprint speed. The tests of endurance and sprint speed in particular took up most of the time of the project; it turns out live animals don’t usually do what you need them to do. Despite their penchant for sprinting out of sight in the wild, getting lizards to run in the lab was more difficult than you might guess. The endurance tests involved a custom-built lizard-sized treadmill. More often than not, the lizards would treat it like a moving sidewalk you’d find at the airport. Other times they’d wriggle into the machine itself (at no risk to them) and I’d have to take apart the treadmill, one screw at a time, to fish them out. No images of that, sadly.

To measure sprint speed, I needed the lizards to run up a wooden pole. Here’s a video of me trying to convince lizards to run up that pole.

I became more interested in paleontology after this project. Dead animals behave more predictably.

After all that, the data didn’t point to any difference in orange and brown lizards’ endurance or sprinting ability. I took a step back to get to the bottom of something I knew I could answer. I wanted to identify the pigments that they were using to color their skin. Having read about what gives Anolis sagrei dewlaps their red and orange color, I was expecting to see two classes of pigments in orange lizard skin: carotenoids and pterins. No one had extracted pigments from even brown A. sagrei skin before, but I wasn’t expecting to see much in non-orange skin.

I boiled lizard skin in all sorts of carcinogenic solutions to extract the pigments.
Then I separated the two types of pigments in test tubes – carotenoids at the top and pterins at the bottom.

As expected, the dewlaps had both types of pigments. Unexpectedly, brown lizard skin contained pterins. I thought this was a little odd since we don’t see red or orange on brown lizards. But, no one had done this before, so I didn’t quite know what to expect. Like brown lizard skin, orange lizard skin had pterins, but not carotenoids. This surprised me because it suggested that the orange color in orange lizards might not be due to the addition of a pigment so much as the absence of one. Melanin (another class of pigment that produces brown and black colors) typically masks the effects of other pigments that may be present. So, although I was unable to test this myself, I now suspect that the orange color is caused by a lack of melanin.

It was time to revisit that camouflage idea. I had taken for granted that orange was too conspicuous to conceal a lizard, but I needed the data to back up my claim. I collected quantitative data on brown and orange lizards’ skin color by using a spectrophotometer, which records color as the wavelengths of light reflected off a surface. The result is something that looks like this:

What A. sagrei dewlaps look like to a spectrophotometer.

One of my collaborators, Dr. Beth Reinke, applied these data to a visual model to predict how A. sagrei’s bird predators would see the new color. She identified that orange anoles are less conspicuous to bird predators. Now the strongest lead is what I had ruled out when I first began the project: camouflage!

So what’s up with orange A. sagrei? The color doesn’t make them more attractive to mates nor does it correlate to increased physical fitness. Because orange and brown skin contain the same kind of orange-producing pigment, my best guess for the mechanism is a lack of melanin in the areas that appear orange. And, although the new color looks conspicuous to humans, it may help orange individuals hide from bird predators. The benefits of orange as camouflage may explain why the new color persists in south-Floridian populations of A. sagrei.

There’s a lot left to know about orange anoles. A good next step would be to test the “orange as camouflage” result in the field. Additionally, research into the genetic basis of this phenotype may identify how it arose and the mechanism behind it. Some breeders have suggested that orange coloration is genetically dominant over brown coloration. This is something I wanted to identify in breeding experiments, but time ran out before I graduated from college.

Orange A. sagrei remain enigmatic. I hope to hear more about orange anoles from enthusiasts in the lab and the field!

Paper: Erritouni YR, Reinke BA, Calsbeek R (2018) A novel body coloration phenotype in Anolis sagrei: Implications for physiology, fitness, and predation. PLoS ONE 13(12): e0209261. https://doi.org/10.1371/journal.pone.0209261

Living Large in the City: Impacts of Urbanization on Anoles

Brown anoles (A. sagrei) thrive in urban environments.

More and more research is highlighting how living in cities impacts the organisms that exploit urban habitats. Some research in anoles even highlights how organism may be adapting via evolution to these novel urban habitats!

However, we still don’t know much about how urbanization impacts reptiles, and anoles are a great group in which to study these effects. A large team from the Kolbe lab at the University of Rhode Island set out to tackle the question of how living in cities can impact anoles by studying populations of both brown (A. sagrei) and crested anoles (A. cristatellus) in urbanized areas in Miami and remaining natural areas within the urban matrix. The team included two undergraduates at URI, Amanda Merritt and Haley Moniz (currently a MS student in Chris Feldman’s lab at UNR ) who were key contributors to the project.
We caught lizards at 7 different sites in the Miami area and measured their morphology, thermal preferences, and parasite loads. This research was recently published in the Journal of Urban Ecology.

We found that for all groups of anoles studied (male and female brown anoles, and male crested anoles), lizards living in the urbanized habitats were larger (see figure below), but showed no differences in body condition, or how much body mass they had per unit length. Larger body size can be associated with increased fitness in anoles, so the larger size of urban lizards could represent an advantage for anoles living in cities.

Lizards from urban (blue) habitats were larger than those from natural (green) habitats.

Despite cities being known to have higher temperatures (the urban heat island effect), including at our study sites, we found no differences in the temperatures that lizards from urban and natural sites preferred. Our preferred temp values were in line with those found for native range populations of these species, which suggests that we are not seeing adaptation of preferred body temperature to the warmer conditions in very urban parts of Miami. This means that lizards living in cities could end up having higher body temperatures than they would prefer, a potential cost to using urban environments, though see Andrew Battles’ recent paper for a more detailed look at this issue!

Lastly, we examined the presence of parasites in the body cavities of these lizards. Most of the parasites that we found were nematodes in the digestive tract, though we also found some pentastomids, crazy crustacean parasites, in the lungs of crested anoles! We found no difference in the presence of parasites in lizards from urban or natural sites, although brown anoles did consistently have parasites more often than crested anoles. When we looked at parasite infection intensity, or the number of parasites in lizards that had them, we did see that brown anoles in urban habitats had significantly higher parasite loads than those in natural habitats. This result indicates that increased parasitism could be a cost of living in cities for anoles, though it may vary from species to species.

Crested anoles from both urban (blue) and natural (green) habitats have similar levels of infection intensity (number of parasites) to brown anoles in natural habitats, but brown anoles in urban habitats show significantly higher levels of infection intensity.

Overall, our work suggests that there may be advantages (larger body size) and costs (non-optimal body temperatures, higher parasite loads) for anoles living in cities, and that these may vary even between species that are quite similar ecologically. Anoles are an emerging study system in urban ecology, so stay tuned for what should be a fascinating variety of papers on city-loving anoles in the near future!

Christopher J Thawley, Haley A Moniz, Amanda J Merritt, Andrew C Battles, Sozos N Michaelides, Jason J Kolbe; Urbanization affects body size and parasitism but not thermal preferences in Anolis lizards, Journal of Urban Ecology, Volume 5, Issue 1, 1 January 2019, juy031, https://doi.org/10.1093/jue/juy031

Leptin Mediates Tradeoffs in Green Anoles

Leptin is made by fat cells and serves as a signal of available energy to lots of systems in the body. Diagram from healthjade.com

When you only have so much money to spend, you have to carefully consider what you’ll use it for. Do you go for instant gratification (dinner at your favorite, but expensive, restaurant!), or do you invest in something with a longer-term return (a needed kitchen appliance that will last years)? Free-living organisms have to make this choice throughout their lives. Of course they don’t cook in a kitchen, but their bodies have to ‘decide’ what to do with precious and limited energy. For our beloved anoles, in what do they invest that hard-earned energy from ingested bugs? Make more and bigger babies right away? Grow more? Invest in their immune system or locomotor performance to survive better?

Animal bodies don’t actually make ‘decisions’ about these things. Instead, hormonal and molecular mechanisms are arranged as networks in the body to make ‘decisions’ under different sets of conditions. In a new paper, Andrew Wang, a recent graduate from Jerry Husak’s lab, was curious how such decisions are made in green anoles. Previous work in the Husak lab showed that when calories are restricted, and lizards are forced to invest in athleticism via exercise training, both reproduction and immune function suffer. Why is that, and is it reversible?

The observation that trained and food-deprived lizards had little to no body fat (imagine elite marathon runners!) suggested that the hormone leptin, produced by fat cells, might be responsible. Leptin affects lots of systems in the body (see figure above), and less fat means less leptin. This means that leptin serves as a direct and convenient signal of energy stores: if you have enough energy, then you can direct organs to get to work. This fact has led to a huge literature on how leptin, as an energy signal, controls tradeoffs among traits. Hopefully you’re seeing a slight paradox here – if more leptin means more energy available, how could it mediate tradeoffs? How do you get more of one trait than another if leptin controls both in the same general direction?

Andrew conducted an experiment to find out. He replicated previous work, training and calorie restricting male and female green anoles to cause suppressed reproduction and immune function. He then gave half supplemental leptin and the other half saline, expecting leptin to ‘rescue’ reproduction, immunity, or both. The results were clear: immunity was ‘rescued,’ but reproduction was not. That is, both sexes were investing in survival-related traits to (hopefully) reproduce later instead of just reproducing right away. These results suggest that either there wasn’t enough energy for reproduction and the signal was moot, or the two traits have different sensitivities to leptin. Future work will help to disentangle these possibilities, but this work gives us more understanding of how anoles allocate energy when it’s limited.

Figure from Wang et al. (2019). Key: U=untrained, T=trained, H=high diet, R=restricted diet, L=leptin injected, S=saline injected. Note here that the swelling response to PHA injection was suppressed with training and caloriee restriction, but it was rescued with leptin (T-R-S vs T-R-L).

Paper: Wang AZ, Husak JF, Lovern M. 2019. Leptin ameliorates the immunity, but not reproduction, trade-off with endurance in lizards. J Comp Physiol B, in press. doi: 10.1007/s00360-019-01202-2

Evidence for Local Specialization in a Widespread Lizard

Figure 1 . (A) Widespread species may be comprised of populations (dashed lines) exhibiting traits generalized across all habitats or (B) capable of specializing to unique habitats throughout their range.

Widespread species are expected to be successful in natural environments because of their ability to generalize across a variety of habitats. Throughout their range, widespread species may experience a variety of habitat types and may subsequently exhibit similar patterns of morphology and performance capabilities. In this sense, widespread species could encounter a “jack-of-all trades but master of none” trade-off in that a population may not be optimally adapted to a certain environment (Figure 1A). By contrast, we hypothesized in a recent paper published in Evolution that local specialization could be driving the broad-scale success of a widespread species. By adapting to a specific habitat, natural selection could produce unique fitness surfaces and phenotypic variation between populations (Figure 1B).

In this study, my collaborators and I conducted this study on four distinct populations of Urosaurus ornatus, a widespread lizard found throughout the American southwest (Figure 2), to determine whether success is a result of ecological generalism or local specialization. Urosaurus ornatus is a small, polymorphic lizard that primarily occupies desert habitats. While the common name is the ornate tree lizard, this species can naturally be found on a wide variety of substrates, including tree limbs, tree trunks, boulders, shrubs, snags, canyon walls, and the ground. We focused on populations found in one of two microhabitat types, tree-dominated or boulder-dominated, to assess habitat-specific differences in natural selection.

Figure 2. Male (left) and female (right) Urosaurus ornatus on a natural perch.

Morphological characters and performance capacity are ideal traits for this experiment due to their sensitivity to ecological and environmental characteristics. Thus, our results show striking differences in selection on these traits by sex, supporting the notion of divergent ecological pressures within a shared environment. This, coupled with the heterogeneity in selection between habitat types, leads us to believe that local adaptation is driving the success of this widespread species. In the past, evidence for generalism at the species level has masked the underlying affects of the environment and local adaptation. Here we are able to tease apart some of these traits and determine how selection varies at the population level in order to extrapolate to the species level.

So what do tree lizards have to do with anoles? In short, the similarities between Urosaurus and Anolis are plentiful. While there may be significant differences in habitat, both genera contain species that are wonderful models for a plethora of different ecological, evolutionary, and genomic questions. The wide breadth of anole literature has influenced our findings in this study and contributed significantly to its impact and viability. For that, we thank the many anole researchers from around the world!

SICB 2019: Insulin-like Signaling across Life Stages in Brown Anoles

The somatropic axis regulates growth in vertebrates

Our growth during development is controlled by a complex brain-body axis called the somatotropic axis. Put simply as in the photo below, the hypothalamus in the brain signals the pituitary to release growth hormone into the body where it stimulates the liver to produce two forms of insulin-like growth facts (IGF1 and IGF2). Both growth hormone and IGF have different effects on growth of muscle and bone. While we rely on mouse models to study how IGF might impact human development, it turns out that the relative secretion of IGF1 and IGF2 over the course of life is quite different in the two species. In fact, we know little about IGF production and signaling in non-mammals.

Expanded view of the somatotropic axis to show receptors and binding proteins. From Yakar et al. (2018).

Abby Beatty, from Tonia Schwartz’s lab at Auburn University, set out to determine the developmental pattern of the somatotropic axis in brown anoles. Of course, the axis is much more complex than the diagram above, including receptors in various tissues, binding proteins that carry the signals around the body (see below), and proteins in cells that cause responses (IRSs). Abby studied expression of IGF1, IGF2, and five binding proteins during brown anole development, from embryo to hatchling to adult. She expected to find that IGF1 and 2 would be expressed differentially and that the expression patterns would differ across life stages. That’s exactly what she found. IGF1 and 2 were both low and similar in expression early in development, but at hatching IGF increased with IGF2 expressed more than IGF in adults. Surprisingly this is more like a human pattern than a mouse is!

As for the binding proteins, expression was similar for all of them in the brain, gonads, and liver, but BP3 was expressed less in the heart. It’s still unclear what these patterns in binding proteins mean for brown anole development, but they make for some excellent future research questions! Indeed, these results add to the already-long list of things that makes anoles good model systems.

SICB 2019: Large Immune Challenges Do Not Decrease Performance

Christine Rohlf from the University of St. Thomas presents her research on immune-performance tradeoffs.

Traveling to SICB is always exciting, but like any trip through crowded airports, hotels, and convention centers, you’re more likely to get sick during your travel if you’re not careful. As we all know, getting a travel cold (or worse) makes you feel terrible and certainly doesn’t make you want to run on a treadmill! The same is likely true in wild animals, including anoles. Mounting immune responses is energetically expensive, but so are other things that lizards have to do, like forage, escape predators, and process food. So, does an increasingly large immune challenge decrease a lizard’s ability to perform? Christine Rohlf, an undergraduate student in Jerry Husak’s lab at the University of St. Thomas, wanted to find out in green anoles.

Christine designed a laboratory experiment to determine whether two types of immune challenge, alone and in combination, decreased bite-force performance, sprint speed, or endurance capacity compared to controls. Some lizards received two sequential injections of lipopolysaccharide (LPS), some received a skin wound with a biopsy punch, and some received both. LPS is a signal on gram-negative bacteria that, when injected, tricks the body into thinking it is infected with bacteria. So, you get an immune response, but you don’t actually get an infection.

Surprisingly, none of the immune challenges affected sprint speed or endurance compared to controls. Although the lizards were not calorie-restricted, they were on a modest diet, meaning that energy was limited, but clearly not enough to make a difference. Apparently these two immune challenges aren’t as costly as we thought. The only effect that Christine found was that the second LPS injection significantly decreased bite force. Because bite force is likely the least energetically expensive trait of those measured (imagine running until you’re exhausted versus biting into a hard piece of French bread), Christine suspects that the decrease in bite force was due to a lack of motivation while feeling sick. Future work with calorie-restricted lizards should tell us if mounting an immune challenge is a significant cost to anoles.

SICB 2019: Tail Autotomy Happens More When the Tail Stores More Energy

Amy Payne of Trinity University presents her research on tail autotomy in 7 lizard species.

One of the most interesting features of many lizards, including anoles, is that they can willingly, and actively, lose their tails to escape predators. While it might seem counterintuitive to lose a large body part, it’s better than being eaten! Despite the obvious benefit of surviving another day, there are some costs associated with tail autotomy.

Amy Payne, a student in Michele Johnson’s lab at Trinity University of San Antonio, wanted to know whether the frequency of tail loss across seven species was associated with predatory and social use of the tail as well as energetic content of the tail. For those that are anole-inclined (which is why you’re here), Amy included A. cristatellus and A. carolinensis. She caught and measured hundreds of lizards, and made behavioral observations on them as well. She was then able to quantify how many lizards of each species had a lost/regenerated tail, as well as what proportion of each tail was lost.

Surprisingly, frequency of tail loss was not associated with using the tail in a social or predatory context. However, there was an association between these two functions of the tail: species that more often used their tail for predatory use also used their tail in social contexts more. There was no relationship between the frequency of tail loss and the proportion of the tail that was lost on average across species. But she did find some really cool results when looking at energetic content of the tail. Amy found that there was a significant positive relationship between frequency of tail loss and tail energy content. That is, the more energy that lizards have in their tails, the more frequently individuals in that species will have a lost/regenerated tail. While this seems opposite to what one might casually predict, Amy hypothesizes that the predator-distraction to survive function of tail autotomy is more likely to succeed if the tail is larger and more beneficial to the predator. In other words, if a lizard has a scrawny tail and drops it off for a predator, it is more advantageous for the predator to ignore the low-cal tail and just eat the lizard. This would put selection on species with low-energy content tails to be more prudent about when they drop their tails. These really interesting results open up some exciting areas for future research on the costs and benefits of tail autotomy!

SICB 2019: Does a Tropical Anole Evolve When Colonizing a Novel Habitat?

Anolis apletophallus from Panama, a well-studied species from the Panama mainland.

Over the past 15 to 20 years, the study of evolution has undergone something of a paradigm shift. Whereas scientists used to believe that evolution in most animals was a slow process, only observable over longer timescales, we now know that evolution is fast. Meaningful change can occur in many types of traits, including morphology and physiology, in just a handful of generations of a given organism. With this shift in our understanding, many biologists have begun conducting experiments which attempt to observe evolutionary processes in action, and shed light on how evolutionary mechanisms play out in the real world.

Dan Nicholson, a student in Rob Knell’s lab at Queen Mary University of London, worked with Mike Logan and a team of researchers to do just this in a tropical anole, Anolis apletophallus. Dan and his colleagues caught over 400 individual anoles from the mainland and introduced them to a novel environment: four small, anole-free islands formed when the Panama Canal was created. Two of these islands were similar to mainland habitats, while two had wider types of vegetation. Prior to placement on these islands, Dan measured a suite of characters of these individuals, including perch height, size, leg length, head, and toe morphology, enabling him to observe any changes in the distribution of these traits over time.

After leaving the anoles on their new tropical island homes for a year, Dan returned to recapture the survivors and measure both them and their offspring. By comparing the traits of the surviving lizards and their young with those of the population founders, Dan could observe changes in traits as well as measure natural selection on them. At SICB 2019, Dan reported that he found that anoles on islands with wider vegetation did indeed use these broader perches and that anoles also perched closer to the ground. Correspondingly, he found that toe pad size decreased and that hindlimb lengths were longer on some islands, potentially allowing lizards to better exploit lower, broader perches. 

Anoles on all islands also showed a reduction in head depth. The reason is unclear, but Dan is looking into whether differences in competition or the prey community are potentially driving this pattern. Finally, measuring selection was very difficult and analyses proved problematic, though in some cases selection estimates do seem to match with observed changes in morphological characters. Dan and his team are hoping that adding data from another generation of anoles will clarify these effects, so stay tuned!

Keep track of the latest from Dan on Twitter: @DanJNicholson

Natural Selection on Morphology in a Tropical Lizard After a Rapid Shift in Habitat Structure NICHOLSON, DJ*; LOGAN, ML; COX, C; CHUNG, A; DEGON, Z; DUBOIS, M; NEEL, L; CURLIS, JD; MCMILLAN, WO; GARNER, T; KNELL, RJ; Queen Mary University London

Page 8 of 66

Powered by WordPress & Theme by Anders Norén