Category: All Posts Page 73 of 146

Notes from the Field: Predation on Anolis sagrei on Isolated Cays in Abaco, Bahamas

Curly tail with brown anole tail visible from its mouth

Curly tail with brown anole tail visible from its mouth

Kayaking to the cays

Kayaking to cays

I was recently in Abaco, Bahamas with Losos lab post-doc Oriol LaPiedra and Ph.D. candidate Darío Fernández-Bellon from University College Cork, Ireland, to carry out some behavioral studies of Anolis sagrei on the island and its surrounding small cays. We kayaked (a highly recommended transportation mean for its lesser-impact on the marine ecosystem, not having to rely on the tide schedule, while allowing you to see rays and sharks and sea turtles!) our way out to islands that are known to have A. sagrei naturally existing alone, or with one of their natural predators, Leiocephalus carinatus.

Curly-tailed lizards are known to prey on A. sagrei and can have significant impact on anole behavior and adaptation. Twice I observed Leiocephalus capturing and consuming A. sagrei, one of which was an adult male and the other an adult female. We have also noticed that the A. sagrei on these island tend to perch higher and are seldomly seen on rocks or leveled ground compared to those on islands without curly tails, so this behavior could be an effect of Leiocephalus being present.

A female red-winged blackbird with a brown anole in its beak

A female red-winged blackbird with a A. sagrei in its beak

On a different island where Leiocephalus were absent, A. sagrei are still under predation pressure, this time by red-winged blackbirds nesting on the island. We observed a female blackbird with an A. sagrei in its beak waiting for us to leave the island so that it can feed its chicks. This observation suggests that A. sagrei on islands without Leiocephalus might still be under predation pressure by other species that might not be present on the island at all times. Also, predation pressure exerted by an aerial predator differs from that by a terrestrial predator or if both predators are present, so this might be a factor in morphological or behavioral changes in these lizards on these islands.

Anolis sagrei on one of the small cays

Other interesting observations include A. sagrei density on islands seems to be unintuitive. Some small islands with fewer perches hosted many more adult males and females than large islands did. Sizes of individuals also seem to vary greatly between different islands: small cay A. sagrei seem to be, on average, larger than those on mainland Abaco. Personally, I am unable to note major differences between islands which might have resulted in these observations. I’m excited to see if the data we’ve collected will give more insight into these observations as well as other behavioral results that will come from this study!

JMIH 2016: Variation and Distribution of Anolis roosevelti

One of the few known Anolis roosevelti specimens.

One of the few known Anolis roosevelti specimens.

Anole stalwart Greg Mayer gave a wonderful talk discussing the distribution and morphology of the large and maybe-extinct Anolis roosevelti. A. roosevelti, commonly known as the Culebra Island giant anole, was first described in 1931 by Chapman Grant, a US Army Major and practising herpetologist, from a single adult male specimen collected on Culebra. Although Reinhardt and Lutken, in 1863, had already provided an accurate description of A. roosevelti, but under an alternative name of A. velifer.

IMG_0367

Reinhardt and Lutken’s specimens were collected from Vieques, Tortola, and St. John, although Greg having the opportunity to study them meant tracking them down to natural history collections in both Copenhagen and Stockholm. In total, this entire species is known from eight specimens, only six of which are still in existence (Greg had the opportunity to study all six, meaning he’s now seen more roosevelti than any other anolologist?). Greg explains that roosevelti based on the limited information provided by Dimas Villanueva, who collected the holotype, and his own investigations, roosevelti can be classified as a “crown-giant” ecomorph. This means that the eastern islands of the Puerto Rico bank had a series of four ecomorphs, with roosevelti being what Ernest Williams termed a climatic vicariant of cuvieri, occuring in (and presumably being adapted to) the more xerophytic forests of the eastern bank islands.

The known distribution of Anolis roosevelti.

The known distribution of Anolis roosevelti.

Greg went on to describe the morphological features which distinguish A. roosevelti from a A. cuivieri, an ecologically and morphologically similar species from neighbouring Puerto Rico. Roosevelti is a larger, brownish gray rather than green as is seen in cuvieri (although check out these gray cuvieri preveiously mentioned on AA). Roosevelti generally has larger head scales, and a more elongate and deeply grooved head – these differences are confirmed in the ANCOVA analyses below.

FullSizeRender (2)

So, what chances are there of seeing roosevelti in the wild? Low, probably. No specimens have been collected since 1932, and several researchers, including Greg, have recently scoured both Vieques, St. John and Tortola but with no success. By far the most extensive searches have been conducted by Ava Gaa, who exhaustively searched Culebra (totalling 1500 hours of looking!) as well as short visits to Vieques and St. John all with no success. Tantalising reports of potential candidates turned out to be juvenile green iguanas. Greg concludes by recommending that the long-protected and relatively poorly explored eastern half of Vieques may hold the secret to if any populations remain.

JMIH 2016: Anolis vs. Phelsuma in Hawaii

The gold dust day gecko was introduced to Hawaii in the 1980s. It is ecologically similar to the green anole, which was introduced to Hawaii in the 1950s.

The gold dust day gecko was introduced to Hawaii in the 1980s. It is ecologically similar to the green anole, which was introduced to Hawaii in the 1950s.

Hawaii has no native herpetofauna, aside from sea turtles. Human-mediated introductions between the 1950s and 1980s have created an interesting new guild of arboreal and diurnal lizards: the green anole (Anoles carolinensis), the gold dust day gecko (Phelsuma laticauda) and the brown anole (A. sagrei ).

Amber Wright next to her poster on Saturday

Amber Wright next to her poster on Saturday

Phelsuma laticauda belongs to a genus that is endemic to Madagascar with almost 50 species, that are known for their incredible color patterns. Anolis carolinensis and P. laticauda are thought to be ecologically similar and thus potential competitors.

Amber Wright’s research investigates whether and how the three species partition their habitat when they occur in sympatry and how that might affect species abundance. Using field observations and morphological data, she found that the three species overlap in body size and habitat use, which suggests that they are potential competitors for food resources and perch sites.

Enclosure experiment

Enclosure experiment.

Preliminary data show that abundance decreases when ecologically similar species are present.

Preliminary data show that abundance decreases when ecologically similar species are present.

In a pilot study, Amber used seven 10x10m plots to simulate different community scenarios: only one species, two species and all three species. Anolis carolinensis and A. sagrei seem to be interacting similarly to populations outside of Hawaii: coexistence with reduced densities and increased perch heights of A. carolinensis. When all three species were present, P. laticauda perched higher than usual, presumably to avoid competition with A. carolinensis. Future work will focus on long term effects of species composition on resource partitioning and abundance of each species.

JMIH 2016: Exploring Social Networks and Species Coexistence of Anolis lizards

Reptiles are often thought of as solitary and not social animals. However, all of us who study anoles know that Anolis are anything but solitary animals. Spend a few minutes observing an anole and you might see it dewlapping, doing push-ups, tail wagging, and fighting with other males or even other anoles species.  James Stroud, a Ph.D. candidate from the Feeley lab @ Florida International University, presented on Saturday about the exploratory results of a new research method he and Robert Heathcote have started to construct social networks of A. sagrei and A. cristatellus in Miami, Florida. A. sagrei and A. cristatellus are similar in morphology and ecology and they wanted to learn how patterns of social interactions between these two species allow them to coexist outside of their native range.IMG_20160709_152928392

IMG_20160709_153811103 IMG_20160709_153904300

Individual social behavior manifests itself collectively at the population level and interactions between populations (within and between species) might act as a basis for evolutionary processes. James and Robert tagged both male and female anoles in their study to track and recapture the animals in the future for a long term study. They measured the distance between every two anoles observed and inferred the strength of interaction as stronger if the anoles were closer to each other. Both species show a great web of interactions both within and between species. Some individuals are also much more “bold,” interacting with many males and females of either species, while others show fewer social interactions. These preliminary data are exciting since so little is known about Anolis social behavior. James also mentioned that they will be including additional data such as the types of interactions that will add great complexity and insight to this story.

IMG_20160709_154158042

 

 

JMIH 2016: Malarial Infection Rates Greater in Anolis carolinensis than Anolis sagrei in Central Florida

Cells infected with P. floridense (left and right) vs. healthy cells (middle)

Cells infected with P. floridense (left and right) vs. healthy cells (middle)

Brian Devlin, a graduate student from University of Central Florida, presented a poster on differential rates of malarial infection by Plasmodium floridense between two Anolis species in Central Florida. While both species exist in the area, A. sagrei is the more recent invader. Brian hypothesized that the infection rate would be higher in A. sagrei because A. carolinensis has coexisted with the parasite longer and might have developed some resistance to it.

Brian collected blood samples from both species and examined the cells under the microscopes to look for signs of malarial infection.  He actually found that the infection rates of P. floridense were significantly greater in A. carolinensis. Infection rate also did not correlate with SVL, sex, presence of tail autonomy, date or locality of the lizard. However, there is a higher rate of infection in the warmer months (May-July) possibly due to the in increase rainfall resulting greater mosquito presence. From these results, Brian hypothesized that the lower malarial infection rates in A. sagrei might have helped the species to outcompete A. carolinensis and successfully establish in Florida.

Brian's poster

Brian’s poster

 

JMIH 2016: Herp League Graduate Student Award Winner: Urban Habitat Partitioning by Two Common Species of Puerto Rican Anolis

Kristin Winchell, my fellow lab mate at the Revell lab, presented her work on the habitat use of two urban dwellers in Puerto Rico. Past studies have shown that Anolis cristatellus and Anolis stratulus vary in abundances and use different portions of the natural habitat. As early as 1964, Rand showed that A. stratulus was less abundant and perched higher on trees in forest habitat. Picture1However, we know very little about whether these patterns are maintained in urban areas where species have access to novel manmade structures. To address this, Kristin evaluated the habitat use of these two species across seven urban replicates and contrasted it to the available habitat. She found that urban A. stratulus uses more isolated perches with greater vegetative canopy and perches at higher portions of the habitat. Anolis cristatellus uses perches that are less isolated, shaded mostly by manmade canopy (i.e. buildings and houses) and at lower heights. When examining these patterns in a multidimensional space, she showed that A. cristatellus has expanded its urban niche through the use of manmade structures, while A. stratulus uses a subset of the natural portion of the habitat that A. cristatellus also uses.

Screen Shot 2016-07-08 at 1.14.23 PM

Her research shows that these two urban dwellers interact with the novel portions of the habitat differently. Anolis cristellus has expanded its niche towards manmade structures which has implications for adaptation to enhance stability and locomotion when using these structures as shown in some of her previous work (Winchell, et al, 2016).  Anolis stratulus uses the less available remnants of the natural habitat which may have implication for conservation if they become sparser as urbanization expands.

JMIH 2016: Comparative Phylogeography of Three Widespread Anolis species across the Puerto Rico Bank

Alexandra Herrera presented on using genetic population structure to understand how geographical processes have shaped genetic isolation of three widespread Anolis species on the Puerto Rican Bank. Geographical processes are an important event in shaping current populations and can lead to interesting patterns of diversification. However, these processes may not necessarily affect species similarly. In this study, Alexandra used a combination of nuclear genes and one mitochondrial gene to examine the population structure of these three anoles.

Evidence strongly suggests that populations of Anolis pulchellus were separated into two major clades through the formation of mountains. These two clades are made up of one cluster from south Puerto Rico and a cluster that includes both Northeast Puerto Rico and the Virgin Islands.

20160708_144935The diversification of the other two species corresponds with tectonic and sea level changes. For Anolis stratulus, divergence between populations in PR, Culebra, Vieques and the Virgins Islands occurred at the end of the Pliocene after the formation of the Virgin Passage.  These populations formed five clusters east PR, south PR, Virgin Islands, Vieques-Culebra and Peter-Norman islands.

20160708_145223For Anolis cristatellus the divergence between east PR and south PR with the Virgin Islands was estimated around the late Miocene-Pliocene transition when the Mona and Virgin Island passages formed. These populations formed 4 clusters east PR, south PR,  Virgin Islands and Carrot Rock-Peter-Culebra-Piñeiro.

20160708_145426This research shows that each species had a different diversification pattern and that they all occurred around the middle of late Pleistocene. Furthermore, geographical processes may affect species differently, leading to various patterns of population structures.

 

 

JMIH 2016: The Effect of Incubation Moisture on Desiccation Rate

Corey Cates, a PhD student in the Warner Lab presented his latest
results on desiccation tolerance in Anolis sagrei. Desiccation tolerance
is resistance to water loss and is crucial for lizards especially in dry
habitats. Lizards have parchment-shell eggs that take up water from
the environment during incubation. Corey used two incubation conditions to
test whether desiccation tolerance changes throughout the lifetime of
a lizard and whether incubation moisture has an effect on desiccation
tolerance. His study site consists of four islands within the Tomoka River
in Tomoka State Park, Florida. Two of them
have little vegetation, arid climate and lizards lay their eggs in
dry substrate that consists of shells and rocks. The other two islands
have more vegetation cover, cooler climate and moist dark soil to
incubate the eggs. Corey collected individuals from all
islands and incubated their eggs under dry and wet conditions. He
found that desiccation tolerance is highly plastic: hatchlings that
were incubated under dry conditions show low desiccation rates,

matching rates for naturally incubated individuals.

Experimentally incubated individuals match desiccation rates of individuals sampled in the field

Experimentally incubated individuals match desiccation rates of individuals sampled in the field

He also found that desiccation rates decrease within the lifetime of an individual.

Desiccation rates decrease after releasing hatchlings on experimental islands

Desiccation rates decreased after hatchlings were released on experimental islands

He then released the hatchlings to measure survival. He found that desiccation rates are adaptive: individuals incubated under humid conditions had higher survival on mesic islands, and dry incubated individuals had higher survival on arid islands. Future research will focus on exploring the physiological mechanisms that lead to differences in desiccation tolerance, such as scale number and scale size. He will be continuing complementary research during his dissertation work to further explore the effects of incubation moisture on lizard phenotypes.

JMIH 2016: Evolution Isn’t Slow–Experimental Studies of Eco-Evolutionary Dynamics

For many years, biologists believed that evolution was a process that played out over vast stretches of geological time and would not be observable during field studies. More recent research, however, has begun to show that evolution can occur very quickly and that experiments in the field can address evolution in action. Tom Schoener, eminent professor at the University of California, Davis, shed light on our evolving view of how evolution occurs in his talk, “Eco-evolutionary Aspects of the Lizard Anolis sagrei in an Island Metapopulation” at JMIH 2016.

By introducing a novel predator, the curly-tailed lizard (Leiocephalus carinatus), which devours anoles, to a series of small islands in the Bahamas, Schoener and colleagues were able to observe evolutionary responses in A. sagrei in fewer than 10 years. By preying on A. sagrei, curly-tailed lizards induced behavioral changes in perch height, and created selection for relatively longer limbs that increase anoles’ ability to escape this predator. Curly-tailed lizards also caused a variety of ecological effects, including reducing anole populations and changing arthropod abundance, which may affect the future evolution of anoles on these islands. Ongoing monitoring shows that these anole populations seem to be rebounding and that different types of selection may be acting on hindlimb length.

A curly-tailed lizard (Leiocephalus carinatus) displays its namesake in Florida. Photo: Ianaré Sévi.

A curly-tailed lizard (Leiocephalus carinatus) displays its namesake in Florida. Photo by Ianaré Sévi.

Perhaps not surprisingly, many of the experimental islands were occasionally devastated by hurricanes which are becoming more frequent and more powerful in the Caribbean. While these extreme weather events interrupted some of Schoener’s planned research, they also provided a unique opportunity to study how hurricanes may cause natural selection. Schoener found that anoles which survived hurricanes had longer hindlimbs, and these lizards were better able to hold onto trees and other perches at high wind speeds, likely increasing survival of hurricanes by preventing lizards being blown out to sea! Taken together this body of research suggests that novel environmental changes, such as invasive species or increasingly extreme weather, exert selection on organisms and that we can observe these organisms evolving rapidly on ecological timescales.

JMIH 2016: Late-season Lizards Hatch More Quickly and Run Faster

Previous research in the Warner lab has shown that temperature during egg development influences fitness and performance in Anolis sagrei. In particular, a warmer incubation temperature increases sprint speed. The breeding season of A. sagrei spans from March through October, with lower temperatures early in the season and higher temperatures late in the season. Phil Pearson, a masters student in the Warner Lab, conducted an experiment to test whether embryos are developmentally adapted to their incubation temperature. He collected eggs from two temporally-separated cohorts and incubated them under two different temperatures, simulating seasonal temperature differences. He found that late season hatchlings had higher egg survival when incubated under late season temperature. Regardless of incubation temperature, late season embryos had higher sprint speed, larger body size and longer tails. This might compensate for the late start, since they are competing with early cohort individuals in the population.

Late season hatchlings have higher sprint speed regardless of incubation temperature

Late season hatchlings have higher sprint speed regardless of incubation temperature

Overall, this suggests that timing of oviposition has greater effect on morphology and performance than incubation temperature. Future analysis will show whether timing of oviposition affects survival. Phil released the hatchlings on small islands to measure fitness using a mark-recapture approach and will hopefully present his findings at future meetings.

 

Page 73 of 146

Powered by WordPress & Theme by Anders Norén