Category: All Posts Page 66 of 146

SICB 2017: Masking the Parietal Eye in Green Anoles

This post was written by Miguel Angel Webber, an undergraduate in Michele Johnson’s lab at Trinity University.

Samantha Adams presenting her poster at SICB.

Samantha Adams presenting at SICB.

The parietal eye, a photosensitive organ located on top of lizards’ heads, has long been thought to play an important role in regulating lizards’ circadian rhythm and body temperature. The eye detects UVB rays, mediating the release of melatonin from the pineal gland and evoking a behavioral response. Samantha Adams, an undergraduate at Marosh Furimsky’s lab at Westminster College, PA, conducted a study on bearded dragons (Pogona vitticeps) and green anoles (Anolis carolinensis) to examine the effects of masking their parietal eye on their thermoregulatory behavior. Adams took individuals from each species and set up a testing arena, placing a UV-B light-only source and an infrared heat-only source on opposite sides. She then tracked the amount of time each lizard spent under either lamp, doing so before masking the parietal eye, while the eye was painted with black non-toxic paint, and again after uncovering it.

Adams found that bearded dragons rely heavily on the eye for thermoregulation – while lizards ordinarily spend less than 20% of their time basking underneath the heat source, lizards with their parietal eye masked spent the vast majority of their time under the heat lamp. Additionally, all of her bearded dragons experienced erratic locomotion in the day post-masking, running so frequently from side to side of the cage that she had trouble characterizing the lizard’s lamp preference. Once the black paint was removed, lizards took one to two weeks to resume ordinary behavioral patterns. However, she found that the green anoles in her study seemed unaffected by the experimental manipulations; lamp preference was unchanged by covering the parietal eye, and anoles spent roughly 25% of their time under the heat lamp in both the control and experimental treatments. The anoles displayed none of the erratic locomotor patterns Adams found in the bearded dragons, and other than a qualitative account of more time spent being brown, the lizards seemed unperturbed by the black paint on their parietal eye.

Adams’ results shine a new light on the parietal eye, long thought to be a structure essential to all lizards that possess it, as a potentially vestigial structure in green anoles. Future work is necessary to understand any other roles the eye could serve in anoles, but the stark difference with bearded dragons in this study helps illuminate the wild evolutionary path of our favorite lizards.

SICB 2017: Adult Anoles Influence Perch Orientation Of Juveniles

Hello from unexpectedly cold New Orleans! Our coverage of SICB 2017 continues and we hope you will enjoy the increased posting over the next few days.

On Friday, David Delaney presented more data from his Master’s thesis from Dan Warner’s lab further exploring how adult and juvenile A. sagrei interact. Previously David showed that the presence of adults did not affect microhabitat use, but that high densities of adult males decreased survival in juveniles, especially in smaller lizards.

This year David presented intriguing data suggesting that the presence of adult males influenced how juveniles sat on their perches. He found that the presence of adult males alter both horizontal and vertical orientation of juveniles. When one male is present, juveniles increase horizontal orientation over time, but if three males are present, juveniles face upwards more than when no or only one male is present. Additionally, they also face the trunk of the tree more than away from the tree when they are horizontal and adults are present. Because of the chance of juvenile saurophagy, David suggests this helps juveniles to monitor where the adult males are to prevent being eaten.

Check back often to read about more great research being presented at SICB 2017!

Nice New Article on Anoles in The Scientist

 

Caribbean Anoles Function as Model Organisms for Evolutionary Dynamics

The small lizards adapted to unique niches among dozens of isles.

By Amber Dance | January 1, 2017

316
NOTICE ME!: A male Anolis stratulus (barred anole) extending his dewlap in Puerto RicoPHOTO BY MICHELE JOHNSON

It’s not easy to snare a lizard. Evolutionary biologist Michele Johnson affixes a noose made of dental floss to a telescopic fishing rod to reach into the bushes and tree canopies where Caribbean anoles live. By the end of the summer field season, her students from Trinity University in San Antonio, Texas, develop a knack for it. “We almost always catch our lizards,” says Johnson.

She doesn’t just collect field measurements and observations; she’s taken 30 different species of anoles back to her lab to analyze their physiology. Anoles have become a favorite model for evolutionary biologists because of their extraordinary diversity—there are more than 400 species in genus Anolis—and because of how they originally populated the Caribbean islands. The relative scarcity of mammals, snakes, or birds on the islands left many niches open for the lizards to occupy.

As anoles—which also inhabit Central and South America—reached individual islands, their populations diversified into island-specific forms that occupy certain niches. For example, each of the four largest islands in the Greater Antilles (Hispaniola, Cuba, Puerto Rico, and Jamaica) hosts one or more species that are green lizards hanging out in the lower canopies of trees, and another group of short-limbed, slow-moving reptiles that perch on twigs. These are two of the six “ecomorphs” that scientists who study Caribbean anole species have defined. To be considered an ecomorph, a set of habitat specialists must exist on more than one island, though the species in each group differ between islands. And yet, other anole species belong to no particular ecomorph class.

Caribbean anoles offer scientists a sort of “natural experiment,” explains Luke Mahler, an evolutionary biologist and herpetologist at the University of Toronto. Each isle, with similar environments, acts as a replicate for how anoles underwent convergent evolution into ecomorphs. As a result, evolutionary studies of anoles have flourished in the past couple of decades—think Darwin’s finches, but scalier.

“They really are a good model system for lots of questions, from very small-scale molecular work all the way up to adaptive radiation,” says Jerry Husak, a physiologist at the University of St. Thomas in St. Paul, Minnesota.

The basic anole ecomorphs go way back in evolutionary history, found Jonathan Losos, an evolutionary ecologist at Harvard University. Emma Sherratt, now at Australian National University in Canberra, got a hold of 20 fossil anoles while a postdoc in Losos’s lab. The fossils dated back 15 million to 20 million years, when the lizards were preserved in amber on the island of Hispaniola. Some were in museums, others in private collections. Using CT scans, the Losos team examined anatomy to confidently assign these fossils to four of today’s ecomorphs; a couple other fossils might be part of a fifth (PNAS, 112:9961-66, 2015). “At least several of the habitat specialist types already existed,” concludes Losos.

Despite the countless hours biologists have spent studying Caribbean anoles, the genus seems to have plenty of surprises still in store. In addition to her ongoing studies of physiology and behavior in diverse anole species, Johnson has recently focused on how her local Texan anole, Anolis carolinensis, determines dominance. A. carolinensis, like many other anole species, adopts a strict mating hierarchy in captivity, with males battling each other for access to prime habitat and to females. In the field, the hierarchy is more complicated—a lizard defending his own territory is more likely to win a fight, she thinks. She figured the biggest males would also be more likely to triumph, either in the lab or the field, and thus achieve larger territory and more females to court.

In order to correlate body characteristics and behaviors with dominance, Johnson’s group set up a sort of lizard fight club, pitting anoles against each other in one-on-one cage matches, with a single perch to battle over. Winners tended to execute more visual displays, performing push-ups and head-bobs and expanding the showy throat skin known as a dewlap. They also chased and bit the losers, who tended to back away and to hide in a corner.

But larger anoles weren’t always the winners in captivity or in the field. “Body size doesn’t predict who wins these fights at all,” says Johnson. Instead, behaviors made a huge difference—the most aggressive lizards won their matches. A longer head also helped, perhaps because it looked to opponents like a serious biting weapon. In the field, animals with a wider head and powerful jaws occupied larger territories with more females present (Anim Behav, 118:65-74, 2016).

Body size still probably matters, Johnson says. She has not yet tested in field studies whether size might help an A. carolinensis male establish his territory or take over a vacated area. And at least in other anole species, bigger males sire more offspring.

Mahler also got a surprise from the anoles when, in 2010, he received an email from Miguel Landestoy, a Dominican naturalist who claimed he’d seen a new species. Mahler was initially skeptical. “Everybody thinks they’ve got a new species,” he says, yet “the Caribbean anoles are the best known anoles, by a long shot.”

Then Mahler opened Landestoy’s pictures. “Holy crap,” he said. “That doesn’t look like anything we’ve seen on Hispaniola.” The critter was huge, by anole standards—about a foot from nose to tail tip. It had short legs, a short tail, and a mottled greenish-gray pattern that suggested it could easily blend into a mossy or lichen-covered branch. “I bought the first cheap flight I could find,” recalls Mahler.

The other thing that struck Mahler about the new species—which he and his colleagues dubbed A. landestoyi—was that it looked similar to anoles found in Cuba. Their clade is called chamaeleonides for their creeping, chameleon-like movements and camouflage prowess. These particular kinds of anoles, scientists had assumed, were unique to Cuba. But here was another species, making its living in many of the same ways, on Hispaniola (Am Nat, 188:357-64, 2016). “This is an example of what might be a seventh ecomorph. . . . Evolution is more predictable than we have yet given it credit for,” says Johnson, who was not involved in the project.

“It’s amazing, in part, that anything new there could be found after all these years,” adds Losos, a coauthor on the study. “The age of discovery is not yet over.”

An Unusual Color Pattern in Anolis roquet

untitled-1

As Skip Lazell showed nearly a half century agoAnolis roquet on Martinique is extraordinarily variable in color across its range. This variation has been the subject of much recent work by Roger Thorpe’s lab.

In a recent paper in Herpetological Review, Anderson et al. report on finding an unusual color variant during their recent fieldwork on Martinique.

The Anoles of Bermuda and Evidence for Interspecific Competition

untitled-1

Bermuda only has one native lizard, a skink. However, during the first half of the 20th century, three anole species were introduced.  The first, the beautiful Anolis grahami from Jamaica, quickly spread over most of the archipelago, as David Wingate reported in 1965. However, Wingate noted that the subsequent two species, A. leachi from Antigua and A. extremus from Barbados achieved only more localized distributions.

Thirty-one years later, I published a follow-up survey. By that time, A. grahami had conquered the entire entire and A. leachi had greatly increased its range, but A. extremus was still limited to a far corner on the west end of Bermuda.

Joe Macedonia and colleagues have now returned for a 20-year follow-up, now 51 years after Wingate’s paper. In a paper just published in Herpetological Review, hey find that A. leachi is now also found throughout the Bermudian archipelago. Curiously, however, A. extremus has not advanced at all, with still a very small distribution in the west (see map below). The explanation doesn’t seem to be habitat availability, because there is no obvious difference between where A. extremus occurs and where it doesn’t. Macedonia et al. conclude, as I did, that it is competition from the very similar A. grahami that is preventing A. extremus from expanding its range.

Macedonia et al. also provide a wealth of information on the habitat use of all three species. And there’s a kicker–A. sagrei  has recently been introduced to Bermuda. Will it expand its range and, if so, how quickly. Notably, A. sagrei is considerably more terrestrial than the other anoles on Bermuda, so the opportunity seems to exist.

untitled-2

A Gripping Story: Anole Hangs onto Windshield of Car Going 80 MPH

We’ve had previous posts on the penchant of anoles to hitch a ride on a windshield, but this one’s the topper.

Anole Toepads Not as Good as Those of Geckos

toeapd

The truth must be told.

Previous work by Anthony Russell has demonstrated that geckos have a sophisticated vascular system  and connective tissues that allows the toepad of geckos to be molded to the surface with great precision, enhancing the contact between the setal hairs on the pad and the surface. It had been speculated that a similar system existed in anoles, but no one had looked carefully. Now, Russell has, and he reports in Acta Zoologica that previous statements were mistaken: anoles lack what most pad-bearing geckos have. Here’s what the abstract says:

Adhesive toe pads of geckos house modified components of vascular and/or connective tissues that promote conformity of the setal fields with the locomotor substratum. Similar modifications have been claimed for the digits of Anolis, but evidence for them is not compelling. Angiographic and histological investigations of Anolis failed to identify any evidence of either an intralamellar vascular reticular network or a central sinus. Instead, their vascularity more closely resembles that of lizards in general than that of pad-bearing geckos. The loose connective tissue of the toe pads likely contributes to their general pliability and flexibility, promoting localized compliance with the substratum. Through the shedding cycle, the lamellae change shape as the replacing setae elongate. The outer epidermal generation lacunar cells on the inner lamellar faces simultaneously hypertrophy, providing for compatibility between overlapping lamellae, enabling reciprocity between them. This contributes to continuing compliance of the setal fields with the substratum. Overall, digital structure and attachment and release kinematics of the toe pads of Anolis are very similar to those of geckos exhibiting an incipient adhesive mechanism. Both lack major anatomical specializations for promoting conformity of the setae with the locomotor substratum beyond those of the seta-bearing portions of the epidermis.

Miami Elementary School Monitors Local Anole Abundance

30% Off 2017 Anole Calendars Today!

screen-shot-2016-12-14-at-9-09-45-am

Buy ’em here, use this code: ZCUSTOMGIFTS

Splotchy Green Anole

Karen Cusick, proprietor of Daffodil’s Photo Blog, watched this green anole turn from green to brown. Or mostly brown. I’ve seen this sometimes myself. Anyone know what’s going on here? Seen it in other green anoles?

Page 66 of 146

Powered by WordPress & Theme by Anders Norén