In the past, numerous anole enthusiasts have posted photos of atypical color variants (1, 2, 3, 4). While sampling small spoil islands in the intracoastal waterway last October, I caught a male brown anole with an unusual splash of color on the shoulder (Fig 1). Reports of sagrei that are completely orange have been noted (5, 6); however, those animals appear to represent a more intense version of the ‘rusty red’ that many of these lizards commonly display on their bodies, particularly on the head. The orange on this male, however, is unlike anything I’ve seen on a brown anole, save for the coloration outlining the dewlap. I’m curious to know if anyone has seen something like this before.
Category: All Posts Page 62 of 146
Habitat partitioning due to species coexistence and its implication for species divergence has been the subject of intense research in evolutionary biology. However, its effect on lizard thermoregulation behavior and effectiveness has largely been neglected. Along with Grigoris Kapsalas, Efstratios Valakos and Panayiotis Pafilis, we recently published a paper in the Journal of Thermal Biology, demonstrating that habitat partitioning is responsible for essential divergence in environmental temperatures, while it also promotes deviations in species thermal preferences and thermoregulatory behavior.
This work took place in a narrow mountain site in Peloponnese (Feneos plateau, Lake Doxa), Greece. Despite its small size, Greece hosts one of the richest herpetofauna in Europe with a total of 86 species (15 of which are endemic). On top of that, Feneos plateau is an amazing place were 28 reptile species coexist and is the only area in Europe where seven lizards of the family Lacertidae occur in sympatry. The first survey at Feneos plateau started in late 1990s and since then the area attracted many herpetologists from different countries.
For the past 20 years our group has worked on the Feneos broader area studying how resource partitioning shifts dietary preferences, digestive performance and species locomotion. In line with these studies, here we focused on three Podarcis (the most predominant and diversified reptile group in Europe) lizard species–Podarcis peloponnesiacus, P. tauricus and P. muralis–and explored how habitat thermal heterogeneity affects the species’ ability for accurate and effective thermoregulation. To assess our objectives, we compared body temperatures (Tb), operative temperatures (Te) and set-point body temperatures (Tset) of the three species.
As expected, niche partitioning resulted in differences in the thermal quality of the microhabitats used by the three species, with P. muralis occupying cooler habitats compared to the other two species. The latter resulted in P. muralis being active at lower body temperatures. Yet, all species thermoregulate effectively and keep their field body temperatures close to their preferred temperatures, indicating high thermoregulation accuracy. Interestingly, the preferred temperatures lizards select in the lab were similar for all three species, despite the differences in the microhabitat temperatures and the lower Tb P. muralis achieved in the field. These findings reveal a rather conservative thermal physiology between these three closely related species. We suggest that by selecting cooler microhabitats and being active at suboptimal temperatures, P. muralis probably avoid or reduce competitive interactions with the other two species.
Paper: Sagonas, K., Kapsalas, G., Valakos, E. & Pafilis, P., 2017. Living in sympatry: The effect of habitat partitioning on the thermoregulation of three Mediterranean lizards. Journal of Thermal Biology 65, 130-137.
Colin Donihue and Anthony Herrel just completed their trip to Redonda to study Anolis nubilus and no doubt they’ll report back to us shortly. Meanwhile, a tip of the hat to AA commenter Nathan Manwaring for pointing out this article posted on Fauna and Flora International’s website:
Captivating Caribbean island to be given a new lease of life
Starving goats and predatory rats to be removed from Redonda to restore this Caribbean island to its former glory.
The Government of Antigua and Barbuda has announced plans to remove goats and invasive rats from its most rugged and remote offshore island to allow endangered wildlife and their habitats to recover.
Redonda is home to a unique array of plants and animals, including rare lizards found nowhere else in the world. The uninhabited and seldom visited island is also formally recognised as an Important Bird Area, supporting globally-significant numbers of seabirds.
However, the island’s plant and animal populations are disappearing fast thanks in large part to its population of over 5,000 aggressive black rats (an invasive alien species) which prey heavily on the island’s wildlife. Together with the herd of long-horned goats that was brought to Redonda by humans more than a century ago, these mammals have transformed this once-forested island into a moonscape. So few plants survive that even the goats now face starvation.
Redonda is over 50 hectares in area and rises dramatically from the Caribbean Sea, 56 km south-west of Antigua. Goat skeletons litter the island, along with the relics of stone buildings from a guano mining community that lived here until the First World War. With few trees left to stabilise the ground, soil and rocks are crumbling into the sea, threatening nearshore coral reef in the waters below.
“We cannot stand by and watch as a part of our country, part of our history, disappears. We cannot be responsible for decimating animal populations on a regional scale,” says local conservationist Natalya Lawrence of the Environmental Awareness Group (EAG).
The Redonda Restoration Programme has been formed by the Antigua & Barbuda Government and EAG in collaboration with partners from the UK (Fauna & Flora International, British Mountaineering Council), USA (Island Conservation) and New Zealand (Wildlife Management International Ltd).
“I am immensely proud that my ministry has been a driving force in the development of this major initiative,” says Honourable Molwyn Joseph, Minister of Health and the Environment. “Restoring Redonda to its full glory will be a great achievement for our country.”
A new home for starving goats
One of the first steps will be to capture and move the remaining goats to Antigua, where they will be cared for by the Department of Agriculture.
“The goats are starving to death on Redonda and must be removed for their own sake,” explains Astley Joseph, Deputy Director of the Department of Agriculture. “We believe it is important to rescue this rare breed because it could have useful drought-adapted genes that would benefit other herds on Antigua and elsewhere.”
Rats will then be eradicated using a rodenticide bait that has previously been used to restore more than 20 other Caribbean islands without harming native wildlife. This is scheduled to be completed by mid-2017.
“We and other international organisations have offered our support because we recognise that this is a very challenging yet globally important initiative” says Sophia Steele, Eastern Caribbean Project Coordinator at Fauna & Flora International. “Recent studies have identified Redonda as the most important island to restore in the Eastern Caribbean due to its Critically Endangered wildlife and the high probability of lasting success.”
The new programme is funded by the UK Government’s Darwin Initiative, the National Fish and Wildlife Foundation, the Taurus Foundation and private sponsors. Additional technical and in-kind support is being provided by Caribbean Helicopters and Syngenta Crop Protection AG.
Dr Helena Jeffery Brown of the Department of the Environment says, “Antiguans and Barbudans will be proud as Redonda becomes a role model for regional biodiversity conservation. This will be yet another example of how this country is proactive in meeting the national and international commitments it has made to conserve biodiversity.”
Antigua and Barbuda has a wealth of experience and success under the ongoing Offshore Islands Conservation Programme which has, since 1995, removed rats and other invasive pests from 15 islets closer to Antigua in the North East Marine Management Area. This has saved the Antiguan racer – once the world’s rarest known snake – from extinction, and enabled an incredible recovery of other native animals and plants. Many tens of thousands of residents and tourists now visit and enjoy Antigua’s pest-free islands every year.
“I am most excited to see the progression of recovery on Redonda once the threat of invasive species is removed,” says local biologist Andrea Otto, who will be part of the research team documenting the recovery process. “I want to see which types of vegetation spring up first and which birds return. From what we have seen on the smaller islands we have restored, the transformation will be incredible.”
For more information, read the press release.
Please support this important work by donating today.
Over the last few months, there’s been a slow-boiling battle underway between Holly Dunsworth and Jerry Coyne about the evolution of sexual dimorphism in humans, surrounding the question of why male and female humans, on average, differ in size. The battlefield ranged from blogposts to twitter to magazine articles. In a nutshell, Coyne argued that “sexual dimorphism for body size (difference between men and women) in humans is most likely explained by sexual selection” because “males compete for females, and greater size and strength give males an advantage.” His whole argument was motivated by this notion that certain Leftists ignore facts about the biology of sex differences because of their ideological fears, and are therefore being unscientific.
Dunsworth’s response to Coyne’s position was that “it’s not that Jerry Coyne’s facts aren’t necessarily facts, or whatever. It’s that this point of view is too simple and is obviously biased toward some stories, ignoring others. And this particular one he shares…has been the same old story for a long long time.” Dunsworth went on to propose, seemingly off the cuff, alternative hypotheses for sexual dimorphism in body size in humans that were focussed not on men but on women, as examples of the kind of hypothesis that is relatively rarely considered or tested in this field.
Though on the surface this battle may seem to be about specific biological facts (Coyne certainly tries to win by treating it that way), in reality this disagreement is, as Dunsworth argues, about the process by which hypotheses are tested and about how knowledge comes into existence. About which hypotheses are considered for testing in the first place. As a result, the two ended up arguing past each other quite a bit.
As I followed this whole exchange, I shook my head at the timing–I had a paper in preparation that was SO RELEVANT to the centre of this debate! That paper is now available as a preprint, so I can try to outline why I think that Dunsworth is right, and Coyne is being short-sighted. My argument has *nothing* to do with humans, however–I don’t know the human sexual selection literature well enough to weigh in on that. Instead, my argument is by analogy with our knowledge of mating systems in Anolis lizards.
Hello everybody!
I am a biology Student from Switzerland and together with my travel mate Demian, I visited Cuba for 3.5 weeks in January and February 2017. We are birders, but pretty much interested in everything that moves! We were taking pictures of lizards whenever we could, but without specifically looking for them. Back home, I was surprised how difficult the identification can be and so I would be happy if you can confirm, correct or help me with the ID. There are a lot of pictures…
I will report every safely identified lizard, probably with observado.org, together with the name of the expert, who is helping us out.
We will also put a comprehensive trip report on cloudbirders, including the herp list.
It’s currently dewlapping mayhem down here at the moment, with all species except the late-rising Cuban knight anoles (A. equestris) out and showing off!
An adult male Puerto Rican crested anole (A. cristatellus) performing dewlap extension displays in Miami FL
Visual displays such as dewlap extensions are often used to mediate physical interactions by acting as an indication of the relative size, strength, and fitness of each individual. This is beneficial for both parties; dominant individuals do not have to waste energy that a physical interaction would require, and weaker individuals avert the risk of physical injury (of course, both reasons are reciprocal to both individuals also).
However, when two individuals cannot determine dominance through visual communication, for example if two individuals are equally matched in size, then an aggressive and physical confrontation may occur (read a previous account of one such interaction between two equally-sized males here). The results of these interactions are apparent in many injurious forms, for example through extensive bite marks to the body (as previously discussed here and here), or perhaps even to the extent of tail loss (as discussed here).
Yesterday (9 March 2017) I observed this male Puerto Rican crested anole (A. cristatellus) below that looks like another male had taken a good bite at him!
Of course, there are many avenues through which such an injury may appear. However, the presence of a still-erect nuchal crest paired with how fresh the wound looks (and the time of year!) gives me the impression that this was probably the result of an intraspecific male-male interaction.
Celebrate Daylight’s Savings time with 40% off the Ecomorph line of watches on Zazzle.com. Sale Code: DAYLIGHTDEAL
And we’re open to suggestions for new species to feature on a lovely wrist fob. Suggest away!
Hello everyone,
As part of some ongoing work comparing muscle physiology and performance among Anolis species, I am in search of data on the Field Active Body Temperature (Tb) of Anolis chlorocyanus so that I am sure to perform data collection at relevant temperatures. Unfortunately I have been unable to locate Tb data for this species in the literature, so I hoped one of you might have this information and be willing to share it with me. Any help would be greatly appreciated!
Along with Devi Stuart-Fox, Indraneil Das and Terry Ord, I recently published a paper in Biology Letters showing that arboreal Draco sumatranus lizards orient themselves on the tree trunk perpendicular to the position of the sun during broadcast signalling. This presumably increases the radiance of the translucent dewlap, and likely it’s conspicuousness.
Draco lizards are ecologically analogous to the anoles and share similar signalling behaviour (see this recent Draco clip from the BBC’s Planet Earth II). They too possess extendable dewlaps that differ in colour and size between sex / species groups, and they also live in many different habitat types throughout Southeast Asia. I’ve written about my Draco research on Anole Annals before, here and here, if you’re interested – I hope they’re now well accepted as honorary anoles!
Like the anoles, the skin of the dewlap for many Draco species is stretched thin when extended and allows light to pass through. Leo Fleishman published a Functional Ecology paper in 2015 measuring how the dewlap of Anolis lineatopis appears to glow when positioned with the sun behind them, and how this might improve signalling efficacy. Contrary to expectation, they found the transmission of light through the dewlap doesn’t improve the luminance contrast of the dewlap against the background. The radiance of the dewlap is increased by light transmission (radiance is the sum of the light reflected by the dewlap and any transmitted through the dewlap) – but patches of high radiance are very common in Anolis lineatopis forest shade environment, due to many the little shafts of light shining between gaps in the leaves. Instead they showed that due to the higher total intensity of the dewlap colour (thanks to light transmission) it’s probably easier for a conspecific to discriminate the signal from the natural background colours.
Given this and the similarity between anole and Draco dewlaps, I wondered whether Draco lizards might behaviourally adapt their position on the trunk relative to the position of the sun, to maximise the exposure of the extended dewlap to sunlight. To look at this, I just observed the position of the lizard relative to the sun upon first sighting, and noted whether the lizard was displaying, and if so, whether was it directly to a neighbouring conspecific, or whether it was a territorial broadcast display. We found males were significantly more likely to be oriented perpendicular to the sun when displaying, but not when not displaying (fig. 1).
Of course, signals intended for specific individuals in close-range encounters require the signaller to position themselves such that the receiver is in line of sight – but Draco lizards (and anoles) also give these ‘broadcast signals’ which are not intended for any specific individual, but just as territorial display. For these signals, where there is not another lizard around, they seem to orient themselves perpendicular to the sun, so their extended dewlap is exposed to the most light.
Female D. sumatranus also have dewlaps, but they are small in size and females only very occasionally engage in broadcast display. I had not expected to see this orientation behaviour in females, as their dewlaps appear opaque and so don’t benefit from light transmission. However, I found the same orientation pattern for females as for males: perpendicular to the sun when displaying, but not when not displaying. This is perhaps because their dewlap reflects UV light (fig. 2) and direct sunlight is richer in UV and shorter wavelengths than light reflected off objects in the surrounding scene. Males have yellow dewlaps, and they too reflect a little UV (though much less than females). Of course, the transmission of light is unidirectional and only increases the radiance of the dewlap for those viewing the dewlap from the opposite side to that of illumination, so the benefit of direct sunlight hitting the UV/yellow male dewlap likely plays a role in this orientation behaviour for males as well.