Category: All Posts Page 56 of 146

Concerns Raised over Introduction of Festive Anole to Bermuda

From the September 28, 2017 edition of The Royal Gazette, the daily newspaper of Bermuda.

Fears over lizard arrival

Jonathan Bell

  • Thriving: the brown anole, a new lizard species believed to have arrived from Florida (Photograph supplied)

Bermuda’s latest lizard arrival, the brown anole, appears to be thriving but is prompting concern over the island’s endangered natives.

The lizards, first seen in 2014 and recently spotted on the grounds of Aberfeldy Nursery in Paget, are suspected to have arrived from Florida.

One of that state’s most abundant lizards, the anole arrived there from the Caribbean, where it is native to the Bahamas and Cuba.

Popular as pets but aggressive breeders in the wild, the lizard, distinguished by ridges on its back, has proliferated in the southern United States.

According to the Department of Environment and Natural Resources, Bermuda has two distinct populations of brown anoles.

Genetic analysis shows that the two groups came from “separate founding events”, meaning the second did not arise from the first.

Noting the lizard’s capacity to spread rapidly, Jonathan Starling, executive director of the environmental group Greenrock, voiced concern that the anole would ultimately crowd out Bermuda’s imperilled skinks.

“Unlike the three other Anolis species known to be in Bermuda, the common blue Jamaican, the Warwick or Antiguan and the Barbados, this one is primarily a terrestrial species, the rest being arboreal or tree dwelling,” Mr Starling said.

“The endemic Bermuda skink, already at critically low populations, is also a primarily terrestrial species, so this new lizard poses a much bigger threat to it than the others did.

“I am not aware of the current range of this new lizard but I believe it is still confined within Pembroke and Paget parishes, so at the moment it is not coming into conflict with the remaining known skink populations. However it is likely their range will expand and come into contact with known skink populations within a decade, if not sooner.”

The unwelcome development is the latest of many threats to the endemic skink, which are easily trapped and killed by discarded bottles and cans.

Skinks are also at jeopardy from storms, as well as predation from other invasive species such as cats and rats.

“We’d hope that new initiatives, such as mandatory recycling or a bottle bill, would at least reduce that particular threat to skinks, which would likely benefit them in handling the novel threat posed by this invasive lizard,” Mr Starling said.

T-shirt Contest for Anolis Symposium VII Now Open!

T-shirt from the 1999 Anolis symposium at Penn State

T-shirt from the 1999 Anolis symposium at Penn State

As you may have heard in the announcement of the 7th Anolis symposium, we are searching for the official t-shirt design! You’re all surely aware of how talented our community is, as exemplified by past photo and poetry competitions, so we are asking you all to submit your best designs! A panel of discerning anolologists will choose the winning design, and the winner will receive glory, bragging rights, and pride in knowing that their artwork will be memorialized in t-shirt form for all to admire (the winner will also receive a free shirt).

Designs must meet the following criteria:
Style: line drawings are preferred
Size: Must fit neatly into a 8” x 8” square
Number of colors: 2
File type: high-quality .jpg, .png files or illustrator files.

Also, lease be aware that we may have to make minor alterations to the winning design in order for it to fit onto a t-shirt.

Front of the shirt from the 2009 symposium

Front of the shirt from the 2009 symposium

Please send all submissions to anolis2018@gmail.com with the subject line “anole t-shirt contest” by October 20, 2017!

Stay tuned for the winning design, and may the odds be in your favor! We look forward to seeing all of your submissions. For more information on the symposium, be sure to check out the official page!

p.s. Who still has a t-shirt from the 1989 meeting? Photo?

Back of the t-shirt from the 2009 symposium at Harvard

Back of the t-shirt from the 2009 symposium at Harvard

Request for Anolis aquaticus Photos and Sightings

Photo by Anolis aquaticus from wildherps.com.

Hello anole enthusiasts!

A quick note and a request from your Anolis aquaticus correspondent. Our new paper on stress-related body color brightening in Anolis aquaticus was recently selected as Editor’s Choice in the Canadian Journal of Zoology. In it, we document a genus-atypical direction of color change following exposure to a stressor, possibly related to optimizing camouflage in the water anole’s unusual habitat. Enjoy!

We are embarking on a new research direction with these wonderful watery critters. In our early stages of surveying, I’d like to ask for your help.

We are exploring morphological and behavioral variation across the water anole’s range to explore several hypotheses related to coloration, habitat lighting, temperature, and stress.
For example, dewlap coloration seems to be fairly variable: water anole dewlaps from our sites at Las Cruces Biological Station are red-orange (left), but at Osa the dewlaps are much yellower (e.g., screen shot taken from Brave Wilderness’s video* on the water anole, right).
jennetOsa

In addition, we’re also interested in knowing a little more about water anoles in the riparian zones that are found in otherwise deforested tropical pasture lands. We’ve put together a map of all known collection sites of museum specimens and published studies (sites shown without exact coordinates in the interest of species’ protection; grey sites are approximate).

Anolis aquaticus collection and sightings

You can help by sharing with us your photographs of water anoles (dewlaps are of special interest, but any photographs would be appreciated) and/or locality data** of Anolis aquaticus sightings or collection. Locations of sightings in pasture/agricultural areas are especially needed!

Lindseyns @ gmail.com
Lindsey.swierk @ yale.edu

Thank you for your help!

*A very enthusiastic group called Brave Wilderness posted a video about their search for the “mysterious” water anole. I have mixed feelings about it and its less-than-perfectly-accurate information, but it certainly captures kids’ imaginations!

**To keep this charismatic species safe and help prevent poaching, please send any GPS coordinates to me directly rather than posting them publicly.

Are Brown Anoles in Florida Really Driving Green Anoles to Extinction III: A Post-Irma Update

Almost anyone who cares about anoles in the US  is aware of the hypothesis that the arrival of brown anoles (Anolis sagrei) into Florida has driven declines in the abundance of native green anoles  (A. carolinensis). Though there is certainly evidence that this hypothesis may be valid to some extent, we’ve previously wondered if the decline is as severe as folks seem to think it is. Have green anoles instead simply shifted to higher perches where we don’t see them as often? An informal mark-recapture effort conducted in Gainesville FL suggests that green anoles may in fact be quite abundant, and  based on the evolutionary history of green and brown anoles across their ranges, we do in fact expect green anoles to shift upwards where they co-occur with brown anoles.

Green anoles, increasingly elusive in Florida

Green anoles, increasingly elusive in Florida

We now have yet another piece of evidence that green anoles may be thriving at the tops of trees , just out of sight. Because of Hurricane Irma, which wreaked havoc across Florida last week, many of those tree canopies have fallen to the ground. And Miami herpetologist Steven Whitfield  reported yesterday seeing “more green anoles in the past two days than I have in the two months before that.” This observation was confirmed by other local biologists as well, in comments on Whitfield’s initial Facebook post that said “Green anoles are all over the place. Seems they were around up in the canopy, but now the canopy is on the ground so they’re easy to see.”

 

Help Train iNaturalist’s Artificial Intelligence to Identify Anole Species from Photographs!

iNaturalist has built an artificial intelligence that can identify species from photographs. You can read more about this work here. It’s a powerful tool to help connect people to the natural world and help grassroots conservation efforts overcome species identification issues.

This artificial intelligence now works on about 20,000 species globally for which we have sufficient data to on which to train the model. We need your help to make it work better on the genus Anolis!
Asset 3@3x
There are 416 known species of anole, but only 197 species have been observed on iNaturalist. And only about 25 species have enough observations (~20) to include in the artificial intelligence.

We need your help to:

  1. Upload your photos of anoles, particularly those which are data deficient in iNaturalist
  2. identify photos of anoles posted by others so that they can be used to train the artificial intelligence

To get started, navigate to the genus Anolis page on iNaturalist by clicking on ‘Species’ in the menu and searching for the genus Anolis.
Asset 9@3xOnce you’re on the genus Anolis page, 1. you can see the current count of how many Anole species of the total have been observed. Click ‘View all’ to see the full histogram. 2. Clicking on the Trends tab will list some of the ‘Wanted’ species that haven’t yet been observed as well as recent additions to the tally. As more Anole observations are uploaded and identified, the stats on this page will update.
Asset 8@3x

Upload your photos of anoles
First Log In or Sign Up to iNaturalist.
Asset 5@3x
Then Click ‘Add’ from the dropdown in the main menu to launch the upload tool.
Asset 6@3x
Drag your anole photos into the upload tool. Each card represents a single observation, you can drag them to combine them. Make sure you add 1. identifications, 2. dates, and 3. locations to each card. Then, 4. submit your observations.
Asset 7@3x
Identify photos of anoles posted by others
Assuming you’re logged in to your account, Click ‘Identify’ under ‘Observations’ in the main menu to launch the identify tool.
Asset 4@3x
From the identify tool, 1. Enter ‘Anoles’ in the ‘Species’ field and 2. optionally add a country or other location into the ‘Place’ field to filter observations of Anoles that need identifications. 3. Click on an observation to view it in more detail. If you can identify it, 4. click ‘Add ID’, choose a species, and 5. Save your identification.
Asset 6@3x

Genomic Signatures of Climate Adaptation in Anolis cybotes

Anolis cybotes, female from Barahona, Dominican Republic

Anolis cybotes, female from Barahona, Dominican Republic

Katharina Wollenberg Valero & Ariel Rodríguez

Thermal adaptation is the evolution of the ability to persist in novel thermal environments. Phenotypic characters that allow such adaptation, as well as the resulting shifts in the geographic distributions of species, are an emerging field of study in the midst of a changing global climate. Yet, the genomic basis of such phenotypic adaptation is less well understood, so recent efforts of evolutionary biologists are now aiming at one emerging question: Which genes determine thermal adaptation, and are these the same across different populations and species? Luckily, Anolis is yet again at the forefront of novel discoveries being made in this field (see Campbell-Staton et al., 2017).

Many studies have independently identified genes that are responding to changes in the thermal environment, be it through change of expression under an acute stress, or through changes in the DNA sequence as evolutionary response. In 2014, we gathered information on such thermal adaptation candidate genes from Drosophila to Homo sapiens from the literature.

From the published evidence, we extracted a set of gene functions that potentially underlie climatic adaptation. We were able to match these with functions that are known from phenotypic thermal adaptation (Wollenberg Valero et al., 2014). Interestingly, the products of these genes (Proteins, RNAs) were found to be functionally related with each other thus forming gene networks within the cellular environment.

The Caribbean Anolis cybotes is widely distributed across Hispaniola, and thrives in hot, xeric environments just as well as in cooler and more humid montane environments. The rift valley of Lago Enriquillo heats up to 40.5 °C (104.9 °F), and a few instances of frost were reported at the highest peak (Pico Duarte at 3,098m elevation) – so population survival across these climatic extremes does not seem to be a trivial endeavor.

Populations of this species show pronounced differences between montane and lowland forms in morphology, physiology, behavior, and perch use (Wollenberg et al., 2013Muñoz et al., 2014), which led us to expect that at least some of this variation should have a genetic basis. Thus, we set up to test whether Anolis cybotes displays any signatures of genomic adaptation to the diverse kinds of environments it inhabits, and whether any genes showing evidence for selection can also be subsumed under the candidate functions we defined previously.

We sampled tissue of these lizards from several high and low elevations (the specimens being the same as in Wollenberg et al., 2013), and looked for variation according to climatic differences via RAD sequencing and subsequent analysis with LFMM. RAD sequencing generates a reduced representation of the target genome, producing thousands of short sequences representing the distribution of the restriction enzyme’s cutting sites throughout the genome. Owing to this property, it cannot be expected that this type of data will necessarily contain “the total set of adaptation genes”; to this effect, detailed genome sequencing is required and such studies have been done in some model organisms (stickleback fish, beech mice, Drosophila, etc.).

Dying Anoles with Eye Problems in Louisiana

20170827_120628

AA reader Jonathan McFarland sent in these disturbing photos with the following remarks:

“I hope you can shed some light on what’s happening to the wild anoles in my Louisiana suburban yard. This week I have found two adolescents with both eyes bleeding or infected. The attached pictures show only one side of the specimens but in each case both eyes appeared as shown. Any info you could provide would be much appreciated.”

Thoughts, anyone?

20170831_105329

Anolis Symposium VII to be Held March 17-18, 2018 at Fairchild Botanical Gardens in Miami

IMG_7932 Jamaican giant anole (Anolis garmani) – one of the many non-native anoles you may see in Miami, FL.

In 2018 it will be nearly ten years since the last Anolis symposium was held at the Museum of Comparative Zoology at Harvard University. Given the rapid advances and exciting new discoveries in Anolis biology, it’s time to organize the 7th Anolis symposium! So, with this official announcement, please mark the weekend of March 17-18th 2018 in your calendars to come and visit the wonderfully tropical lizard-world of Miami, FL!

The aim of the symposium is to bring together Anolis biologists from diverse backgrounds to share their excitement and discoveries for these marvelous lizards. In this symposium, we hope to foster cross-disciplinary collaborations of people working with anoles and to broaden our general understanding of their biology and natural history. Miami was chosen not only for its spectacular anole diversity, but because of its ready access to anolologists living outside of mainland United States.

Miami, FL, is an ideal place in the USA to host this meeting! Over the past 100 years, eight species of Caribbean anoles have joined one native species in becoming established in south Florida. This meeting will be held on the weekend of March 17-18th 2018, which broadly overlaps with at least one weekend of the Spring Break holiday for most US schools, and does not conflict with other major meetings as far as we’re aware. We hope that this will facilitate good attendance! The symposium will be held at the Fairchild Tropical Botanic Gardens, which is home to a diverse community of exotic lizards, including six (!) species of anoles (read more about them here and on Anole Annals here!).

This post serves as a ‘save the date‘ – stay tuned the Symposium page for more information on conference registration, abstract submission for oral and poster presentations, and article submission for the Anolis Newsletter VII.

12671732_10154152036842074_4486533256117940736_o (2) Puerto Rican crested anoles (A. cristatellus) in Fairchild Tropical Botanic Gardens

Updates on the Development of Anolis as a “Model Clade” of Integrative Analyses of Anatomical Evolution

Staging series page 1

The first plate from the Sanger et al. (2008) Anolis staging series.

Long time readers of this blog will likely remember the many posts I’ve made trumpeting the utility of anoles for integrative analysis of anatomical diversity, studies that gain perspective from disparate biological fields. The community has come a long way since we published the first staging series of anole embryology only nine years ago. To some this may be old news, but I still find this pace exciting and personally motivating. Decades of ecological and evolutionary studies have created a strong foundation upon which to build new insights about the molecular and developmental underpinnings of anatomical diversity. My lab’s questions boil down to trying to shed light on the developmental origins of adaptive anatomical variation. Otherwise stated, where did the requisite phenotypic variation arise from during the adaptive radiation of anoles. The inherently comparative nature of these studies led me to use anoles as a “model clade,” a group of species that provides the capacity to obtain evolutionary insights the way that “model species” have provided pure developmental biologists and geneticists the power to deduce insights in their areas.

One of the highest hurdles to the progression of Anolis as a model system has been long-term access to living embryos. Although comparative biology is a powerful approach for evolutionary studies, one of the hallmark lessons of modern Evo-devo is the need to experimentally validate the candidate molecular changes associated with anatomical evolution. If I hypothesize that Gene X underlies some phenotypic difference between two species, I must 1) show that it is expressed at the time when the difference arises and 2) somehow tweak the expression of Gene X at that time and in that tissue to show that the changes parallel those observed in nature. To do this you must have access to an embryo in culture, unencumbered from its opaque shell.

Over the past several years several people have been working on ways to gain access to lizard embryos. The first report of a culturing method was by Tschopp et al., who used lentivirus to trace cell migration into the genitalia and limbs. I have not personally been able to consistently replicate those conditions, especially for later embryos. Bonnie Kircher and I, however, recently published two relatively “simple” culturing protocols as part of a new book, Avian and Reptilian Developmental Biology. One of the challenges of earlier culturing attempts was bacterial and fungal growth. As a first step to combatting these invaders, we developed a protocol to sterilize the eggs, soaking the eggs in a weak bleach solution (yes, a literal bleach solution). From there we were off and running.

The first method we describe, following from advice from Raul Diaz, has worked on eggs a few days old to those that are nearly half way through their incubation period. Using a fine pair of scissors, we separate the outer opaque lays of the shell from the inner membranes that surround the embryo and yolk. This bag-of-embryo is then transferred to a small culture dish with a nutrient rich media and drugs to further combat bacterial and fungal contamination. This culturing system has worked well for up to ten days, roughly from the time the limbs are developing digits to the time that the limbs have visible scales on them. (Check out the video!) In principle, this method will allow better access to the embryo for viral injection or the application of small molecule inhibitors that disrupt particular signaling pathways.

Be warned, the second method is a little more Frankensteinian. Because the membranes cover the embryo, visualizing development remains difficult. To circumvent this problem, we developed a protocol where we explant a piece of anole tissue, such as the developing

A developing A. sagrei foot explanting onto a chicken embryo

A developing A. sagrei foot explanting onto a chicken embryo

limb, to a chicken embryo. Both anole and chicken seem to fare well at 33 degrees Celsius, below the standard incubation conditions of the chicken and above that of our anoles. Development appears to proceed normally in the explanted tissue, just as it does would in an embryo within its own shell. These experiments still have a relatively low success rate, but when the explant takes, it works well. To better visualize the tissue for imaging we also stained the tissue with a vital fluorescent dye before the transfer, giving the tissue a wonderful Halloween feel.

The work is far from over. These culturing protocols are just the first step and will not work for all applications. More technically challenging steps especially await those that want to manipulate the anole genome or target distinct patterns of gene expression. This is only the start of what’s to come. For more details about these protocols you can download the chapter here.

Knight Anoles Introduced to Another Island: Abaco, Bahamas

Photo by Joel Sartore

The knight anole is really getting around these days: Turks & Caicos, Grand Bahama, Grand Cayman and many other islands. Now they’ve  made it to Abaco, Bahamas, where one individual was captured and possibly two others seen (see article in IRCF Reptiles and Amphibians)Abaco Scientist has an insightful discussion of introduced reptiles and amphibians on Abaco.

Page 56 of 146

Powered by WordPress & Theme by Anders Norén