Author: Jonathan Losos Page 73 of 129

Professor of Biology and Director of the Living Earth Collaborative at Washington University in Saint Louis. I've spent my entire professional career studying anoles and have discovered that the more I learn about anoles, the more I realize I don't know.

Anole Nook Farm

Imagine my surprise to stumble onto a farm that specializes on goatsmilk soap named Anole Nook Farm. I contacted the proprietor, Hannah Shumaker, who kindly explained:

“I named my farm/business after counting 27 anoles sunning themselves on the front of my house one morning.  I’ve since moved, and while my current farm is not quite as much of an anole haven as the first, I still see them regularly.  I’m a North Carolina native and have always been fond of the little fellows.  I’m still keeping an eye out for the elusive blue anole.

My business is locally/sustainably grown soaps.  I use the goatsmilk from my farm and locally grown ingredients in my soaps.  Right now that’s sheep or beef tallow, rapeseed oil, honey, and local botanical additives.  Here are links to a little page about my business and my poorly maintained facebook page.

That’s me and my anole connection, in a nutshell.  Anoles are awesome!”

How Green Anoles Change Color

Found this nice explanation of anole color change on twitter. It’s from the website of Elizabeth Nixon, a professional artist, who says that it was made in Photoshop in 40 hours. Very nicely done!

More Horny Lizards: Sri Lankan Ceratophora

Here at AA, we’re a bit obsessed with lizards with things on their noses, technically called “rostral appendages,” and sometimes, depending on shape, “horns.” A lot of this interest comes Anolis proboscis, the horned anole of Ecuador, about which we’ve written much before.

Almost as cool as horned anoles (really, that’s an unfair standard) is the Sri Lankan lizard genus Ceratophora, which contains three species with rostral (or nasal) appendages, and two other species that are appendage-less. In a recent paper in Journal of Zoology, Johnston et al. discuss the evolution of these appendages. It’s long been debated whether the appendages evolved independently in each species or once in the ancestral Ceratophora, followed by loss in the two nasally-naked species. By combining analyses of phylogeny (which produces somewhat inconclusive reconstructions of ancestral phenotype), morphology and allometry, the authors conclude that the appendages most likely evolved independently in each of the three species. Moreover, they suggest the blob-like appendage of C. tennenti (bottom photo) may have evolved for crypsis, but the more horn-like appendages of the other two species probably resulted from sexual selection.

While on the topic of nasal horns, I decided to see if there are any new photos of the other horned anole, A. phyllorhinus, on the web, and indeed there are. See below. The natural history of this species, which likely evolved its horn independently of A. proboscis, awaits further study.

from http://ipt.olhares.com/data/big/506/5069364.jpg

from http://www.reptarium.cz/content/photo_rd_05/Anolis-phyllorhinus-03000033975_01.jpg

Taxonomic Splitting And The Meteoric Rise In The Number Of Reptile Species

The rise in number of recognized reptile species through the years.

The rise in number of recognized reptile species through the years.

The number of described species of reptiles has increased extraordinarily in recent times. In a fascinating recent article, Pincheira-Donoso and colleagues have catalogued this increase, as well as describing the taxonomic distribution of present-day reptile diversity. They report that since 2000, the number of described species of lizards has increased by 1164, a remarkable increase of 26%. They also point out that reptile diversity among clades is right-skewed, with most genera containing relatively few species and a few containing a lot. And, of course, they highlight everyone’s favorite genus, Anolis, as one of the largest outliers.

Speaking of anoles, AA wondered how anole diversity has changed since 2000. Daniel Pincheira-Donoso kindly provided the answer, with information provided by co-author Peter Uetz. Since 2000, 42 species have been described, bringing the total in March 2012 (when data were compiled) to 384 (the list of new species from 2000 til the present appears below). That’s only a 12% increase, lagging behind lizards in general, but more on par with the description rate for snakes, which has increased 16% over that period. As AA readers are well aware, however, new anole species are being described at a high rate (e.g., 1,2) and, indeed, Uetz’s Reptile DataBase now puts the number at 391.

What’s behind this incredible burst of species description, both in anoles and more broadly? Some of it is the result of exploration and discovery of truly new, previously unknown, lizards. But most of the increase—in my humble estimation—is the result of the taxonomic splitting of previously widespread species into multiple species. Systematics goes through phases of “lumping” and “splitting” and the field in general seems to be experiencing a massive phase of splitting at the moment. In some cases, this is the result of taxa being differentiated on the basis of morphological characters. However, most is the result of the discovery of genetic differentiation among populations. A naysayer might be prompted to say that this has gone to far, that species are sometimes being described on the basis of minor, insubstantial differentiation. It will be interesting to see if and how much the pendulum swings back.

Are these really the same species?

Are these really the same species?

Regardless, one of the reasons that anole diversity has not increased as much as that in other taxa is that anole systematists—to date—have been restrained in their splitting, particularly in the West Indies. Substantial genetic diversity has been found among populations in many anole species, differentiation so great that many would have described four, six, or eight species from single widespread Caribbean taxa. This, of course, may change in the future, and the diversity of Caribbean anoles may skyrocket.

 

Below are the abstract of the Pincheira-Donoso paper and then the list of new anoles described from 2000-2012. And when you’re done reading those, check out Daniel Pincheira-Donoso’s website, with much information on Daniel and his work on Liolaemus.

Abstract:

Reptiles are one of the most ecologically and evolutionarily remarkable groups of living organisms, having successfully colonized most of the planet, including the oceans and some of the harshest and more environmentally unstable ecosystems on earth. Here, based on a complete dataset of all the world’s diversity of living reptiles, we analyse lineage taxonomic richness both within and among clades, at different levels of the phylogenetic hierarchy. We also analyse the historical tendencies in the descriptions of new reptile species from Linnaeus to March 2012. Although (non-avian) reptiles are the second most species-rich group of amniotes after birds, most of their diversity (96.3%) is concentrated in squamates (59% lizards, 35% snakes, and 2% amphisbaenians). In strong contrast, turtles (3.4%), crocodilians (0.3%), and tuataras (0.01%) are far less diverse. In terms of species discoveries, most turtles and crocodilians were described early, while descriptions of lizards, snakes and amphisbaenians are multimodal with respect to time. Lizard descriptions, in particular, have reached unprecedented levels during the last decade. Finally, despite such remarkably asymmetric distributions of reptile taxonomic diversity among groups, we found that the distributions of lineage richness are consistently right-skewed, with most clades (monophyletic families and genera) containing few lineages (monophyletic genera and species, respectively), while only a few have radiated greatly (notably the families Colubridae and Scincidae, and the lizard genera Anolis and Liolaemus). Therefore, such consistency in the frequency distribution of richness among clades and among phylogenetic levels suggests that the nature of reptile biodiversity is fundamentally fractal (i.e., it is scale invariant). We then compared current reptile diversity with the global reptile diversity and taxonomy known in 1980. Despite substantial differences in the taxonomies (relative to 2012), the patterns of lineage richness remain qualitatively identical, hence reinforcing our conclusions about the fractal nature of reptile biodiversity.

New Anole Species:

Anolis cusuco (MCCRANIE, KÖHLER & WILSON 2000)

Anolis kreutzi (MCCRANIE, KÖHLER & WILSON 2000)

Anolis toldo FONG & GARRIDO 2000

Anolis hobartsmithi (NIETO-MONTES DE OCA 2001)

Anolis ocelloscapularis (KÖHLER, MCCRANIE & WILSON 2001)

Anolis oporinus GARRIDO & HEDGES 2001

Anolis roatanensis (KÖHLER & MCCRANIE 2001)

Anolis terueli NAVARRO, FERNANDEZ & GARRIDO 2001

Anolis wampuensis (MCCRANIE & KÖHLER 2001)

Anolis yoroensis (MCCRANIE, NICHOLSON & KÖHLER 2001)

Anolis zeus (KÖHLER & MCCRANIE 2001)

Anolis ruibali NAVARRO & GARRIDO 2004

Anolis paravertebralis (BERNAL-CARLO & ROZE 2005)

Anolis umbrivagus (BERNAL-CARLO & ROZE 2005)

Anolis anatoloros (UGUETO, RIVAS, BARROS, SÁNCHEZ-PACHECO & GARCÍA-PÉREZ 2007)

Anolis datzorum (KÖHLER, PONCE, SUNYER & BATISTA 2007)

Anolis gruuo (KÖHLER, PONCE, SUNYER & BATISTA 2007)

Anolis kunayalae (HULEBAK, POE, IBÁNEZ & WILLIAMS 2007)

Anolis magnaphallus (POE & IBÁNEZ 2007)

Anolis pseudokemptoni (KÖHLER, PONCE, SUNYER & BATISTA 2007)

Anolis pseudopachypus (KÖHLER, PONCE, SUNYER & BATISTA 2007)

Anolis williamsmittermeierorum POE & YAÑEZ-MIRANDA 2007

Anolis apletophallus (KÖHLER & SUNYER 2008)

Anolis campbelli (KÖHLER & SMITH 2008)

Anolis cryptolimifrons (KÖHLER & SUNYER 2008)

Anolis cuscoensis (POE, YAÑEZ-MIRANDA & LEHR 2008)

Anolis soinii (POE & YAÑEZ-MIRANDA 2008)

Anolis anchicayae (POE, VELASCO, MIYATA & WILLIAMS 2009)

Anolis ibanezi (POE, LATELLA, RYAN & SCHAAD 2009)

Anolis lyra (POE, VELASCO, MIYATA & WILLIAMS 2009)

Anolis monteverde (KÖHLER 2009)

Anolis morazani (TOWNSEND & WILSON 2009)

Anolis anoriensis (VELASCO, GUTIÉRREZ-CÁRDENAS & QUINTERO-ANGEL 2010) Anolis charlesmyersi (KÖHLER 2010)

Anolis osa (KÖHLER, DEHLING & KÖHLER 2010)

Anolis otongae (AYALA-VARELA & VELASCO 2010)

Anolis podocarpus (AYALA-VARELA & TORRES-CARVAJAL 2010)

Anolis unilobatus (KÖHLER & VESELY 2010)

Anolis benedikti (LOTZKAT, BIENENTREU, HERTZ & KÖHLER 2011)

Anolis tenorioensis (KÖHLER 2011)

Anolis sierramaestrae (HOLÁŇOVÁ, REHÁK & FRYNTA 2012)

Anolis ginaelisae (LOTZKAT, HERTZ, BIENENTREU & KÖHLER 2013)

 

Green Anole Creeping And Displaying:The Video

httpv://www.youtube.com/watch?v=R2RXWqiHjhA

Here’s a nice video clip of a green anole (A. carolinensis) creeping along a branch and displaying. To me, it’s a nice reminder that the different ecomorphs not only live in different places, but interact with their environment in very different ways. You’d rarely see a trunk-ground anole, such as A. sagrei, behaving in this manner, but it’s quite typical for trunk-crown anoles.

Invasive Lizards: The Fast Food Chain Connection

Yesterday, we heard a report about red-headed agamas sipping lattes at Starbucks; today, news reaches us that invasive brown anoles in Georgia are munching on Doritos Locos at Taco Bell. Read Janson Jones residential brown anole report at dust tracks on the web.

Another Bad Boy Anole-Eating Lizard Gaining Ground In Florida

Red headed agama in Florida. Photo by John Rahn.

Red headed agama in Florida. Photo by John Rahn.

Anole correspondent John Rahn, of Big Kahuna fame, reports that red-headed agamas are becoming established well beyond Miami. Here’s what he has to say after re-spotting an individual in a Starbucks parking lot that he had previously seen last fall: “I don’t know what he’s eating in that parking lot, but he is HUGE now. My girl at Starbucks says these are all over the place in Jupiter now. He’s survived the fairly cold weather we’ve had, this winter. He is a beauty! Saw another one, same shape, but smaller and very little color.”

AA recently discussed these guys at the Fairchild Botanical Gardens in Miami, and James Stroud suggested that they may have a big and negative effect on anoles, similar to that of curly-tailed lizards. Curlies are also in Jupiter and areas north of Miami–I wonder how these two sun-loving species get along.

Some Cool Anole Photos

Not sure how I came across these on the web, but I found Robert Hoogveld’s flickr page and he kindly allowed me to post these fabulous photos. Some may recall the post on Robert’s article on A. proboscis two years ago. Apparently, he has some more good stuff up his sleeves, or so he tells me.

Photo by Robert Hoogveld

Anolis marmoratus. Photo by Robert Hoogveld

 

Photo by Robert Hoogveld.

 

Anolis (Chamaelinorops) barbouri. Photo by Robert Hoogveld.

 

 

 

 

Photo by Robert Hoogveld

Anolis oculatus. Photo by Robert Hoogveld

Marine Subsidies, Washed-up Seaweed, and Insect Damage To Plants: What’s the Role Of Lizards?

Seaweed washed ashore on a Bahamian island. Photo by Dave Spiller.

Ecologists are increasingly recognizing the myriad connections not only among species within an ecosystem, but between species in different ecosystems. Case in point: seaweed often washes ashore, and it affects leaves on the plants found near the shoreline. How’s that, you might ask? Well, the seaweed decays and releases nutrients that act as fertilizer, increasing the growth of land plants. That’s good for the plants, but it also makes their leaves more tasty, and hence plant-eating insects are attracted and cause more damage to the leaves.

That seems straightforward enough, but then it gets more complicated. As the seaweed decays, it attracts lots of insects. And the insects, in turn, attract lizards. And, in fact, if you happen to be studying this process on small islands in the Bahamas, as Jonah Piovia-Scott and a team from UC-Davis were, then those lizards are our favorites, brown anoles. And if there are more brown anoles around, then they’ll eat more of the herbivorous insects that plague the land plants, and so the washed-up seaweed actually decrease the damage to land plant leaves, thanks to the helpful consumption of the anoles.

Except…maybe the lizards will be so delighted by the seaweed that they’ll spend all of their time there, eating the insects on the seaweed, and thus neglecting the insects on the landplants, so now the effect of seaweed on the land plants becomes negative again.

path diagramSo which is it? That’s what Piovia-Scott et al. set out to discover, and they’ve just reported the results in a paper in Oecologia. And the diagram to the left explains it succinctly. Seaweed increases nitrogen in the leaves, which increases herbivory. Seaweed also increases lizard density, which decreases herbivory, though the negative effect isn’t as great as the positive effect of the nitrogen. Moreover, seaweed also causes lizards to shift their diet, which has a small (and statistically non-significant) positive effect on herbivory because the lizards aren’t eating as many of the land plant herbivores. Bottom line: seaweed increases leaf damage; lizards can’t prevent it, in part because their effects are schizophrenic: more lizards, but eating fewer herbivores.

Interestingly, these results are opposite of what the same team of authors found in a study we discussed two years ago. The difference was that in that study, a big pile of seaweed was laid out at one time and the results were followed over a short period, whereas this study followed natural seaweed deposition and compared sites differing in the amount of seaweed washed ashore, following their sites for a lengthier period of time.

One last point: how did the researchers document that the lizards were switching diet? Not from sitting around and watching the lizards, but by measuring the carbon isotope ratios in their tails. Marine vegetation tends to have higher ratios of Carbon-13 than terrestrial sources, and so insects feeding on plants from different areas will, in turn, have different ratios, which means that, in turn, one can look at the Carbon-13 ratios in lizard tissue and get a sense of from which ecosystem they’re deriving their carbon. And in this case, the more seaweed, the higher the ratio. Pretty nifty!

Glitter Anole

Woo-hoo! Check out these anole beauties. And the green one actually has a red dewlap and looks passably like Anolis carolinensis. Google “plush anole” or “glitter anole” and you can have your own–for as little as eight buckaroos.

But there’s a backstory. Over the years, two undergraduates who worked in my lab each gave me a plush anole as a thank you present when they graduated. One day I was talking on the phone and idly picked up one of the stuffed fellows. Still attached to it was the information tag. And as I opened the tag, which contained natural history information, reasonably accurate, on A. carolinensis, I was amazed to see this:

No doubt, you can see one cause of my amazement. That’s no Carolina green anole, but rather its ecomorphic döppelgánger from Hispaniola, A. chlorocyanus. And, moreover, that’s not just any photo of a Hispaniolan green–that’s my photo! And, as you might have guessed, used without permission.

Incensed, I looked to the bottom of the tag for the company that makes the toy, Fiesta Toys. I looked them up online and went to their contact page. I filled in the little box on the page, noting that they had used my intellectual property without my permission. I pushed “send,” figuring I’d never get any response, much less satisfaction.

Page 73 of 129

Powered by WordPress & Theme by Anders Norén