A movie production company in Germany is named Anolis Entertainment. We’ve mentioned them previously in these pages. What I believe is their latest project, The Reptile, is described by as “Horror at its finest,” winning the coveted “bloody disgusting” rating. Oops. My mistake. The blog is called Bloody Disgusting, but the review substantiates the name. For Anolis Entertainment’s other films, go to their website which, oddly, features an iguana at the top. Be forewarned: the site is in German. I suspect there’s an English version out there, but I can’t find it.
Author: Jonathan Losos Page 34 of 129
Professor of Biology and Director of the Living Earth Collaborative at Washington University in Saint Louis. I've spent my entire professional career studying anoles and have discovered that the more I learn about anoles, the more I realize I don't know.
While canoodling about on the internet, I came across this delightful drawing of a green guana (Anolis garmani), which in turn led me to its source, Naturalist’s Sojourn in Jamaica, published in 1851. Here’s the charming description of the species, including evidence that the art of lizard noosing has a long history. The description starts here:
It then continues:
and concludes:
And here’s the title page:
Anolis carolinensis is an invasive pest in the Ogasawara Islands near Japan, and the Japanese are trying hard to get rid of it. Do you think green anoles can be lured by bait–in this case a cricket–so they’ll approach and stuck in a sticky trap? Apparently they will, as Mitani et al. report in the latest edition of Current Herpetology. Here’s the abstract:
A non-native insectivorous lizard, the green anole (Anolis carolinensis), is causing a severe negative impact on the insect fauna of the Ogasawara Islands of Japan, a UNESCO World Natural Heritage site. A common method to capture anoles is to use adhesive traps. We tested if attracting the lizard by bait improves the effectiveness of these traps. We examined the effects of a lizard’s (1) length of fasting period, (2) distance to the bait, and (3) access to the bait on feeding attempts in a laboratory experiment using 15 lizards collected from Chichi-jima Island. Responses to the baits were also observed in the field, and stomach contents of the trapped lizards were analyzed to assess fasting level in a natural population. The number of lizards that reached the bait was positively correlated with increased fasting days. With a smaller number of days of fasting, the number of lizards that reached the bait was significantly higher when the bait was 50 cm away than 195 cm. Based on the stomach contents of wild A. carolinensis on Chichi-jima, the fasting period of invasive A. carolinensis was typically short, with 92% of the lizards foraging at least every other day. Both laboratory and field experiments indicate the bait must be less than ca. 2 m away to effectively attract the lizard. There is no clear difference between a lizard’s attraction to crickets tethered to a line and those housed in a transparent cup. Therefore, whether the lizard could physically capture the prey did not alter the effectiveness of the bait. This suggests that using an artificial bait simulating prey movement may also be effective.
We’ve had previous posts on anoles at hummingbird feeders, but here’s a video tweeted by Beidler Forest (note: that is a photo of the tweet above; you can’t click on the arrow; you have to click on the link).
Haitian artist Eric Jean Louis has painted this lovely scene, entitled “Les Deux Anolis.” It’s on sale for $750.
The Green Ogre provides a first-hand account of an anole with a surprisingly tough battle to capture a caterpillar. In the end, the anole triumps, but should it have been so difficult?
Video of the first ever captive born horned anole, Anolis proboscis, hatched by Fernando Ayala.
Can any reader help with this question that came in to the AA offices?
“I found the Anole Annals website but I really would just like an answer to one question. Can you help me? My daughter wanted an anole and we bought one in May of 2012. Well, she passed away last night and I didn’t realize the extent of my love for her because I’ve been miserable all night. She would be brown and turn green when she slept or when she was alone. I found her at 10 PM hanging out of her log and I believe she had just expired because she was still all soft and lovely. The main thing is she was her beautiful green color and in death she remained green. Is it normal for an anole to be green when they die? Would she have turned green before or after her death? Could she have felt a feeling of calm or been sleeping in her green color when she died? I really am just hoping she died in her sleep. She was an old lady and her habits changed. She used to always be vertical in her greenery, but the last 2 months I think it was too hard for her to grasp and she spent more time on her log or on the slanted jutouts on her log as that was easier for her to hold on to but still be a little bit vertical. I am just trying to come to grips with her death and hoping she was OK at the very end. I was probably in the same room as I was on the computer but not paying attention to her right then, really hoping she wasn’t reaching out of the log to try and get my attention and I didn’t know.”
We had plenty of discussion a couple years back about the proposal to divide Anolis into eight genera. The debate seems to have quieted down without clear resolution. Now, in a new paper on Mesoamerican herp conservation, Johnson and colleagues come out in favor of the Nicholson et al. proposal. I’ll place their commentary below, but I want to address a point they raise at the end of their discussion.
Johnson et al. conclude: “We agree that Nicholson and her coauthors provided a perceptive set of reasons why their classification will be accepted in time, just as with other classifications that sought to make sense of formerly unmanageable genera, such as Eleutherodactylus , which now not only is segmented into a number of genera, but also a number of families.”
This is not the place to discuss or debate these points, which have been thoroughly aired in previous commentary in these pages [e.g., 1,2]. But what about the authors’ suggestion that this new classification will be accepted in time? Is that happening?
It’s hard to assess how the winds of systematic practice blow, but I took a crack using Google Scholar, restricting my search to the years 2014 and 2015. When I queried how many hits there were for “Anolis,” GS returned (searched on August 14, 2015): “about 2600.” For Norops, “about 110.” Can we conclude that represents a 24-fold preference for the old taxonomy over the new one? Of course not. For one thing, some of those Anolis papers may have been referring to species that would still be Anolis in the new classification, most notably A. carolinensis.
I then tried again, focusing on probably the most studied species that would change its name in the new classification, Anolis (Norops) sagrei. In this case, for the same 2014-2015 period, GS located 16 hits for Norops sagrei vs. 270 for Anolis sagrei. These results would seem to indicate that the new classification system hasn’t penetrated very far into the broader scientific community.
One clear schism in the anole community is between those scientists who work in the West Indies, who overwhelmingly use the name Anolis, versus those in Central and South America, who are more split. So, as a second test, I looked at what I think may be the most frequently referred to mainland anole, A. limifrons. The GS search in this case yielded six hits for N. limifrons and 22 for A. limifrons. Searching on the species chrysolepis gave a comparable result, 29-8 in favor of Anolis (and proving that my guess was wrong about which species is most discussed in the literature). Still a large preference for the established taxonomy, but only a 4:1 ratio compared to sagrei‘s 17:1 ratio.
Of course, there are much more sophisticated ways of addressing their question, but they would take a lot more time. Anyone want to dig further?
Here’s what the authors have to say (broken into paragraphs for easier reading):
The IUCN (International Union for the Conservation of Nature) has a detailed protocol for assessing the conservation status of species. A report on the world’s reptiles was published in 2013. Now, a paper by Johnson and colleagues in Amphibian & Reptile Conservation complains that the IUCN’s methods are not efficient and proposes a simpler, faster method.
Their abstract explains:
“Mesoamerica, the area composed of Mexico and Central America, is the third largest of the world’s biodiversity hotspots. The Central American herpetofauna currently consists of 493 species of amphibians and 559 species of crocodylians, squamates, and turtles. In this paper, we use a revised EVS measure to reexamine the conservation status of the native herpetofauna of this region, utilize the General Lineage Concept of Species to recognize species-level taxa, and employ phylogenetic concepts to determine evolutionary relationships among the taxa. Since the publication of Conservation of Mesoamerican Amphibians and Reptiles , in 2010, 92 species of amphibians and squamates have been described, resurrected, or elevated from subspecies to species level, and one species of anuran has been synonymized. The herpetofaunal diversity of Central America is comparable to that of Mexico, an especially significant finding because the land area of Mexico is 3.75 times larger. The number of amphibian species is 1.3 times greater in Central America, whereas the number of species of turtles, crocodylians, and squamates is 1.5 times greater in Mexico. Endemicity also is significant in Central America (65.6% among amphibians, 46.5% among turtles, crocodylians, and squamates), with a combined average of 55.6%. We regard the IUCN system as expensive, time-consuming, tending to fall behind systematic advances, and over-dependent on the Data Deficient and Least Concern categories. Conversely, the EVS measure is economical, can be applied when species are described, is predictive, simple to calculate, and does not “penalize” poorly known species. Our EVS analysis of amphibians demonstrates that on average salamanders are more susceptible to environmental deterioration, followed by caecilians, and anurans. Among the remainder of the herpetofauna, crocodylians are the most susceptible and snakes the least, with turtles and lizards in between. We compared the EVS results for the Central American herpetofauna with those reported for Mexico; the results from those regions show an increase in numbers and percentages from low through medium to high. Arguably, attempting to conserve biodiversity is one of the most important and intransigent issues facing humanity, a situation partially due to humanity’s lack of appreciation for its most serious concerns, and brought about by its anthropocentric focus.”
But what about anoles, you are no doubt thinking? In Johnson et al.’s EVS classification, all Central American anole species are rated as medium or high vulnerabilty, except the following species that are rated as low vulnerability: Anolis biporcatus, A. crassulus, A. laeviventris, A. lemurinus, A. petersi, A. sericeus, A. tropidonotus, and A. unilobatus.