Invasive species can often compete for resources with native species, which can have a negative impact on the community. This is an especially common occurrence when it comes to the diet of these competing species. It is important to investigate the diet of both the invader and the native species in order to determine whether this competition is present and if it will cause negative effects in the future.
Chelsea Connor grew up on the island of Dominica. She is currently an undergraduate student at Midwestern State University in Wichita Falls, Texas in the lab of Dr. Charles M. Watson. Her research addresses the dietary niche overlap of native and invasive species on her home island of Dominica. For this research, Chelsea and another undergraduate student, Destiny Zinn captured and collected feces from Anolis oculatus (a native species) and Anolis cristatellus (an invasive species) on Dominica. They successfully extracted and amplified a region of the cytochrome oxidase I gene from 44 samples. Then they ligated the PCR products and transformed them into E. coli to grow on a plate. After this, they sequenced the resulting clones and placed them into Molecular Taxonomic Operational Units, which were matched using the databases BOLD and GenBank with the help of Daniella Biffi and Dr. Dean Williams at Texas Christian University. They calculated the similarity of diets using the Sørenson coefficient.
Chelsea and her collaborators found a shockingly low degree of dietary overlap, discovering that these two species of anoles on Dominica consume different arthropod prey. They identified 40 prey species in this experiment, and only 4 species were contained in the diet of both the native and invasive anoles. Chelsea emphasizes that there may be dietary niche partitioning, which could explain how the two species are able to coexist across the island and avoid competition.