If you look at a map of the United States at night, the urban areas are aglow with light pollution. Urban light pollution disrupts biological processes from gene expression to ecosystem composition across multiple taxa, including birds, insects, mammals, and fishes. With ever-increasing urbanization, understanding the effects of artificial light at night (ALAN) on organisms is crucial to future conservation efforts.
Margaret McGrath, an undergraduate in Dr. Christopher Howey’s lab at the University of Scranton, is examining the impact of ALAN on glucocorticoids in green anoles (Anoles carolinensis), which are commonly found in urban environments. Margaret specifically examined the impact of ALAN on the daily rhythmicity of corticosterone (CORT) and CORT responsiveness to an environmental stressor. She exposed green anoles to either a natural light-day cycle of 12 hours of light and 12 hours of dark or 24 hours of light. After six weeks of exposure, Margaret performed competitive immunoassays to measure baseline CORT levels at midnight and noon. Additionally, she measured CORT responsiveness after placing the green anoles in a bag for 30 minutes to simulate an environmental stressor.
Anoles not exposed to ALAN displayed an expected CORT daily rhythmicity with higher levels of CORT during the day than at night. Anoles exposed to ALAN lost this CORT rhythmicity and maintained CORT at a level intermediate to the other group. In contrast, ALAN does not appear to impact the anoles’ CORT responsiveness to environmental stressors. Her results suggest that green anoles exposed to ALAN are still able to respond to environmental stressors. However, there could be downstream effects from the loss of CORT rhythmicity because it has been linked to arrhythmic activity in mammalian studies.
In the future, Margaret plans to investigate if the natural CORT rhythmicity can be regained by anoles exposed to ALAN when placed back into a natural light-dark cycle. This future research can aid in determining the longevity of ALAN’s impacts on organisms. You can reach Margaret at margaret.mcgrath@scranton.edu and find more about her research on chowey.net, Dr. Howey’s website.
Leave a Reply