Where do you work and what do you do?
I am an Assistant Professor in Biology at Rutgers University—Camden studying the evolutionary genomics of anoles. Before that I was a Postdoctoral Fellow at Harvard University in the laboratory of Jonathan Losos. I started working on anoles during my PhD in Ecology and Evolutionary Biology at the University of Rochester. My research combines a variety of evolutionary disciplines including population genomics, phylogenetics, and experimental animal crosses to ask questions about how new species arise.
What aspects of anole biology do you study, and what have you learned?
I study speciation, which is the process that leads one species to become two or more distinct species. I am interested in what evolutionary forces drive this process. One thing we have learned about speciation in anoles is that populations that are very similar by most measures can still show signs of speciation in progress.
How and why did you start studying anoles?
I have studied a lot of different organisms in my career – including fruit flies, fish, and freshwater mussels. I have even contributed to a paper on naked mole rats! While these studies have been great fun to work on, I have always loved lizards. My very first research project involved documenting the reptiles in a newly formed Florida State Park. Since then, lizards have always been a consistent theme in my work, even as I have branched out into other groups. As I became interested in studying the process of speciation, anoles seemed like an obvious choice. There are over 400 species of anoles, so they are clearly very good at speciation!
What do you love most about studying anoles?
Anoles are unique in that they straddle the divide between model and non-model organisms. Many of the most important discoveries made in evolutionary genetics have come from so-called model organisms like fruit flies, mice, and yeast. While we have made great strides in understanding the genetics and genomics of these species, our knowledge of their biology in nature is relatively limited. In contrast, decades of research on anoles, performed by countless scientists, has generated a tremendous amount of knowledge concerning the ecology and natural history of these lizards. In the last 15 years, we have added genomics to our anole research toolkit to the point where anoles are just a few steps behind model organisms in terms of the genetic tools available. I believe working on anoles now is as exciting as it has ever been as we now have the ability to combine these two bodies of knowledge to better understand how new species of anole arise.
What is your favorite anole species?
That’s a really difficult question. I’ve dedicated many years to studying Anolis distichus and Anolis sagrei and both are fascinating, charismatic species. Rather than pick between the two species I am closest to, I am going to stray outside of the species I have studied and say my favorite is Anolis conspersus. This species is hands down the prettiest lizard I have ever seen in person. In 2016, I had the opportunity to see the species up close in the only place it occurs naturally, the Caribbean island of Grand Cayman. I spent hours watching and photographing them and every time I thought I had seen the most striking body and dewlap coloration, the next would blow me away. While I haven’t had the occasion to do any research on Anolis conspersus, I hope to study them someday and pay these stunning lizards another visit.
Where can people learn more about you and follow you online?
Website: www.genevalab.io
Twitter: @anthony.geneva
Github: github.com/genevalab
- John David Curlis - March 1, 2022
- Joe Macedonia - January 31, 2022
- Lindsey Swierk - January 27, 2022