Muscle growth and development occur via different physiological mechanisms across the animal kingdom. Variation in behavioral uses of muscle may lead to the evolution of different muscle sizes across animal species. Different-sized muscles may vary in their capacity for strength or frequency of use and larger muscles may develop as the result of possessing higher numbers of muscle fibers, larger muscle fibers, or a combination of the two. Jesus Vega, an undergraduate student with Michele Johnson at Trinity University, was interested in learning how muscle size evolves across anole species by studying the retractor penis magnus (RPM), used to retract the hemipenes back into the tail.
Testing a hypothesis that larger RPM muscles will have more or larger muscle fibers, due to an expected evolutionary trade-off between fiber number and size, Jesus examined copulation behavior data and RPM muscle traits of 24 species of anoles. Behaviorally, there was no correlation found between copulation rate and RPM muscle fiber size or number. Physically however, species that have larger RPM muscles have more RPM fibers, species with larger muscle fibers have RPMs with more fibers, and species with larger bodies have more RPM muscle fibers and larger RPM muscles. These results show that larger muscles evolve due to increased muscle fiber size and number and also suggest that copulation behavior is not associated with muscle size evolution in anoles.
Leave a Reply