Mean CTmin for invasive (gray) and native range (green) populations of Anolis sagrei.

Mean CTmin for invasive (gray) and native range (green) populations of Anolis sagrei.

Most anole enthusiasts are familiar with the brown anole, Anolis sagrei, because it is a highly successful invader. Although it can be found as far away from its native Cuba (and nearby islands) as Hawaii and Taiwan, most of what we know about invasive populations of this species come from work conducted in Florida. A recent study by Jason Kolbe and colleagues demonstrated that physiological traits vary with latitude in A. sagrei from Florida. Specifically, cold tolerance (CTmin) and desiccation resistance were lowest at higher latitudes in Florida. Tamara Fetters, a graduate student in Joel McGlothlin’s lab at Virginia Tech, supplemented this work by adding data from a native population of A. sagrei found on the island of San Salvador in the Bahamas.

Box plots showing rates of evaporative water loss in invasive (gray) and native range (green) populations of Anolis sagrei.

Box plots showing rates of evaporative water loss in invasive (gray) and native range (green) populations of Anolis sagrei.

Tamara found that mean CTmin for A. sagrei from the Bahamas was close to 12°C, which was significantly higher than in Tifton, the most northerly population from Jason Kolbe’s study, but not significantly different from the lower latitude populations in Orlando and Miami. Similarly, she found that desiccation tolerance in native range A. sagrei was significantly higher than in lizards from Tifton, a result that she attributes to the lower relative humidity found at higher latitudes in Florida. Tamara’s future goals include measuring more physiological traits, such as oxygen consumption and heat tolerance (CTmax), along with morphological traits associated with desiccation resistance (scale number and scale area), for various invasive and native populations of Anolis sagrei.

Martha Muñoz