Sexual dimorphism, or phenotypic differences between the sexes, is characteristic of nearly all animal species. Males and females often differ in size, shape, color, and many other morphological and behavioral phenotypes. This dimorphism can often make it difficult to study selection on various phenotypic traits – how do you measure selection on a trait accurately when that trait may be expressed differently in each sex?
In a talk at the annual Evolution meeting, Robert Cox and Joel McGlothlin help us answer this question. Using dewlap and skeletal measurements – which differ widely between males and females – and data from breeding experiments on Anolis sagrei, they examine the quantitative genetic architecture of these sexually dimorphic traits. Using a matrix-based model, which accounts for genetic correlations between and within sexes, Cox and McGlothlin are also able to see how these sexually dimorphic traits react to a variety of selection regimes, including selection that acts in opposite directions in males and females. In addition, using these simulations, they are able to estimate how different traits can be evolutionarily constrained: genetic correlations between the sexes appear to constrain selection on skeletal phenotypes, but not dewlap-related phenotypes.
These methods are likely to be extremely useful to anyone hoping to measure selection in natural population of anoles, or any other sexually dimorphic species. Sex differences often play an important role in how an organism can evolve in the wild, and introducing them into the way we quantify selection and its response is a key contribution to understand this process. I encourage anyone interested in the details of this method to check out the recent paper by the authors below for more details!
- Lighting Up Anoles at Night! - May 7, 2020
- Evolution 2019: On the Origin of Anolis Sex Chromosomes - June 25, 2019
- Evolution 2018: the Origin of Species, Anolis Style - August 21, 2018
1 Pingback